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1. INTRODUCTION

Semiretracts of free monoids were investigated first by Jim Anderson [1] and
then were the subject of the papers - see references [1-6, 10-12, 14-15]. In the
paper [1] J.A.Anderson presented a theorem that characterizes any semiretract S
by means of two retracts R, R,. Namely, he showed that for any semiretract S
there exist retracts R, and R, such that S = R, N R,. In the paper [2] the
counterexample to this characteristic was given. In the sequel, in this paper we
introduce the notion of dimension of S (written dim(S)); namely, dim(S) = k iff
k is the minimal number such that S = ﬂle R; for some retracts Ry, ..., R;. We
present a polynomial time algorithm that test if dim(S) = k. On the other hand,
we show that a little modification of this problem is N P—complete.

2. Basic NOTIONS AND DEFINITIONS

We assume the reader is familiar with the basic notions and concepts from the
theories of semigroups and the the theories of computation.

Let A be any finite set and let A* denote a free monoid generated by A. The
length of a word w € A*, in symbols |w/|, is defined to be the number of letters
occuring in w (the length of the empty word 1 equals 0).

A retraction r : A* — A* is a morphism for which r o r = r. A retract R of A*
is the image of A* by a retraction. A semiretract S of A* is the intersection of a
family of retracts of A*. A dimension of semiretract S - written dim(S) - is equal
k iff k is the minimal number such that S = ﬂle R; for some retracts Ry, ..., Ry,.
The following theorem is due to J.A.Anderson - see [3].

Theorem 2.1. Dim(S) is finite for any semiretract S.

A word w € A* is called a key-word if there is at least one letter in A that occurs
exactly once in w and the letter is called a key of w. A set C' C A* of key-words is
called a key-code if there exists an injection key : C' — A such that

(1) for any w € C, key(w) is a key of w,

(2) the letter key(w) occurs in no word of C' other than w itself.
Note that any key-code is in fact a code and that for a key-code C there is possible
to exist more then one injection key : C — A. Given a key-code C' and a fixed
mapping key the set of all keys of words in C' is denoted by key(C').

The following characterization of retracts is due to T. Head [?].
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Theorem 2.2. R C A* is a retract of A* if and only if R = C* where C is a
key-code.

Because we shall be dealing with the complexity problems let us define the set
of all inputs (instances) Z; namely a sequence (Ci,...,Cy,!l) is in T iff C1,...,C,
are key codes and [ is a positive integer. Hence, with any (C1,...,Cp,l) € T we
can associate a semiretract S = ();_, Cf. The first decision problem (given as
a languge) DIM — SEM C Z related to the dimension of semiretract can be
defined as follows: (Ci,...,Cp,l) is in DIM — SEM iff there exist | key codes
Dy, ..., Dy such that N, CF = ﬂizl D'. We also will consider the decision problem
MIN — SEM C T; an instance (C4, ...,Cy, 1) is in MIN — SEM iff there exists key
codes C,,...,C;, € {Ch,...,Cp} for some iy, ...,i; € {1,...,n} such that (., C} =
M= Ci,.

The main thesis of this paper is as follows: DIM — SEM is in P while MIN —
SEM is N P—complete.

3. PRELIMINARY RESULTS

Let (C1,...,Cn,k) € Z. In [2] W. Forys and T. Krawczyk proved the theorem
that allows us to narrow down the research on semiretracts to the case when all
considered retracts have the same, common key-set K.

Theorem 3.1. Let S = N}, C* be a semiretract given by retracts C; with key-
codes C; C A* fori=1,...,n. There exist key-codes D; C A* fori=1,...,n such
that

(1) SCc Dy CCf foralli=1,...,n (it means S =i, C})

(2) key(D1) = key(D2) = ... = key(D,,).
Hence any semiretract S is an intersection of a family of retracts generated by key
codes having the common set of keys.

Let S =, D and let D,...,D,, be key codes with the same set K. In the
rest of the paper we assume that any k£ € K occurs in some word from the base of
semiretract S.

Let us fix the order of retracts - D7, ..., D). For any k € K there exist words
wy € Dy,...,w, € D, all with the key k. We write this fact in a matrix form
(abbreviated n—lines):

U, k v,

Hence, in the first column of A(k) there are prefixes u; of w; and in the third
column there are sufixes v; of w; such that w; = u;kv; for all ¢ = 1,...,n. The
matrix A(k) is associated with the key k € K. We denote in the sequel by coly, (k)
and by colg(k) the first (left) and the third column of Ay. Since k occurs in some
word from the base of semiretract S, then w; is a suffix of u; or u; is a suflix of w;
for all ¢, = 1,...,n. For the same reason w; is a prefix of w; or w; is a prefix of
w; for all 4,5 = 1,...,n. If it is necessary we underline that A(k), colr(k), colr(k)
were defined relatively to the order Dy, ..., D,,.
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U
Definition 3.2. We say that k& € K is initial key if colp(k) = | : | for some
u
u € A*. We denote the word u by left(k) as it occurs on the left site of the letter
w
k. We say that k € K is final if colg(k) = | : | for some w € A*. We denote the
w

word w by right(k) as it occurs on the right site of k.

The set of all initial keys we denote by L;,;:. The set of all final keys we denote
by Rfinal-

Definition 3.3. It is said that columns U = and V = form an
Up, Up,
n—factorization of the word w € AT and it is written U <, V iff u;v; = w for
i =1,...,n and there exist %, j such that u; # u;. Let u € A* be the longest common
prefix of uq, .. 5 Un, and let v be the longest common suﬁix of vy, .. . Then there
exist uy, vy, .. ,un,v 6 A* such that u; = uu and v; = v v for all 1= 1 ,n. Then
the columns U’ = : and V' = : form an n—factorization of some word

’ ’

u (Y

n

w € A*. The n—factorization U’ —p V' is called the base and the word w’ is
called the source of the n—factorization U <, V.

n

Definition 3.4. Let k1, ko € K. We say that ko follows k1 iff colr (k1) < colr(ke)
constitutes n—factorization of some word w € AT. The word w is denoted by
bk(k1, ke) as it occurs between keys kq and ks.

The above introduced notations allows us to give a simple lemma that presents
a method for obtaining any word in the base of semiretract S = (;_, Dj.

Lemma 3.5. Let ki,....,k, € K be a sequence of keys of the semiretract S such
that (1) k1 is initial key, (2) ky, is final key and kiy1 follows k; fori=1,...,p—1.
Then the word

w = left(k1)kibk(ky, ka)ka....... ky_1bk(kp_1, kp)kpright(k,)

is in the base (code) C of semiretract S. Moreover, for any word w in C there exist
keys ki, ...,kp, € K such that the above is true.

Any sequence of keys ki,....,k, € K fulfilling assumptions (1)-(3) is called a
generating key sequence.

Remark 3.6. Finding a word from the base of the semiretract is equivalent to finding
a sequence of keys which fulfils the conditions from the above theorem.

Example 3.7. Assume that F, Fs and E3 are key codes with the same key set
K = {k1, ko, ks, ks, k5}.

E, = {abkiaba, kzaa, bksb, bksbaba, ksaa},

Es = {abkiab, aksa, abksb, abksbab, aksa}
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E5 = {abk;a,baks, aabksb, babksba}.
Hence A(k1),A(k2),A(ks),A(ks) and A(ks) are equal respectively

a b ki a b a ko a a ks b
a b ki a b , a ko a , a ks b |,
a b ki a b a ko a a ks b
b ks b a b a ks a a
a b ks b a b and a ks a
b a b ks b a a a ks
For example:
a b a b a
col,(k1)=1| a b |, colg(ki)=1| a b , colp (ko) = a
a b a b a

Hence k; is initial key and k3 is final key. The key ko follows k1, since
colr (k1) <3 colp(ky) form 3—factorization of the word aba. The 3—factorization
b a
b >3 a | is the base and the word ba is the source of 3—factorization
b a
colg(k1) < coly,(ka).
Since k; is initial key, ko follows k1, ks follows ko and k3 is final, then the sequence
k1, ks, k3 is the generating key sequence. Hence the word

left(kl)klbk(kl, kg)]{igbk(kg, k3)k’3’r‘ight(l€3) = abklabakgaakgb

is in the base of semiretract £} N E5 N E3.

4. THE PROBLEM DIM — SEM 1s IN P.

Suppose now that (Cy,...,Cy,1) € Z. By the previous paragraph there exists a
sequence of key codes Dy, ..., D,, with the same set of keys K such that S = (!, D;.

Let k1, ko € K be any keys such that ko follows k1. Assume that n—factorization
U <, V is the base of colr(ki) <, colp(ky). If k3 and k4 are such that ky4
follows k3 and the base of n—factorization colr(k3) <y, colr(ks) is equal U <, V,
then k4 follows ki and ks follows k3 as well and the bases of n—factorizations
colr (k1) < colg(ky) and coly,(ks) <, colr(k2) are equal U «,, V. Hence, with
the pair U «,, V we can associate two sets R, L C K such that forall k € R k € L
the key k follows k and the base of n—factorization colg(k) «, coly (k) is equal
U, V.

Let us denote by B(Ds,...,D,) the set of all n—factorizations that occur as
the base of n—factorization colr(k) < colp (k) for some k,k € K such that k
follows k. It may happen that the set R or L associated with an element U <,
V € B(Ds,...,D,) consists of exactly one element. Suppose that L = {I} and
R={ry,...,rm} for somel,ry,...,r, € K. Note that in any generating key sequence
the key [ has to occur after any r; whenever r; occurs in a generating key sequence.
Let us define for i =1,...,n

D; = (D; \ {vi(1),vi(r1)y ey v (rm) }) U403 (r1)0i (1), ooy 03 (rm )i (1) }
where v;(k) for any k € K denotes key word in D; with k as the key letter. Of
course, for i = 1,...,n the set D; is a key code (fix the letter r; as the key of word
v;(l)vi(r;) for j = 1,...,m). By the previous considerations S = (I, D;. Note
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that the number of elements in B(Dj, ..., D,,) relatively to B(Dy, ..., D,,) diminish
to 1. We could repeat the following procedure in the case R consists of exactly one
element. Hence, we can state:

Lemma 4.1. Let S =(\,_, D} and let Dy, ..., D,, be key codes with the same key
set K. Then there exist key codes Fn, ..., E, such that
(1) SC Ef C D} fori=1,....,n (it means S =\, Ef)
(2) key(En) = key(Es) = ... = key(Ey)
(3) ifU <, V € B(E, ..., E,) then the sets R, L associated with U <, V have
at least two members.

Suppose now that S = (_, E; and the sequence E, ..., E,, fulfills the properties
listed in the previous lemma.

Definition 4.2. Let U <, V € B(C4,...,C,) be an n—factorization of the word
wy; € AT. Let L,R C K be associated with U <, V. We say that w, € AT
separates R and L iff we is the word of the maximal length containing w; and the
equality

{kbk(k,k)k | k € R,k € L} = {kright(k)wsleft(k)k | k € R,k € L}
is true for some words right(k), left(k) € A*. For any k € K the word left(k)kright(k)
is now defined and we denote this word by root(k). Note that the word ws is prop-
erly defined. It may happened that w; = ws of course.

Let us fix the order of all members of the set B(E1, ..., Ey) - Uy <o Vi, ooy U o
V. Assume that sets R;,L; C K are associated with the base U; <, V; and
denote the separating word for the pair R;,L; by sep;. Note that the families
{Linits L1, ..., L} and {Rfinai, R1, ..., Ry} constitute the partitions of the set K.
Note that by the previous lemma every set of those families except Liniz or Ryinal
has to contain at least 2 members.

Example 4.3.

B(E, Ey, E3) =

(—}3 a

L'L'nit - {kl}a Ll - {k27k4}3 L2 - {k37k5}'

Ryinat = {ks}, R1 = {k1,ka}, Ry = {ko,ks}.

The families {Linit, L1, L2} and {Rfinar, R1, R2}, where Ry, L; and Ry, Lo are as-
sociated respectively with the first and the second element of B(Eq, ..., E,), form
the partitions of the set K.

The word aba € At separates Ry and L;. The word aa separates Ry and Lo.

The roots of k1, ko, k3, k4 and k5 are equal respectively baky, ko, k3b, bksb, ks.

Now we are ready to give the basic for our considerations lemma.

Lemma 4.4. Let S = ﬂ?zl E? be a semiretract such that the sequence of key codes
Ey,...,E, with a common key set K fulfills the conditions given in Lemma 4.1.
Then, for any key code F with key set K such that S C F* there exists a key code
G with K as the key set such that

(1) ScG*C F*
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(2) Letk € K. Assume that if k is not final, then k € R for some s € {1,...,m}
and if k is not initial, then k € Ly for some t € {1,....m}. Ifv(k) € G
is the key word with k € K as the key letter, then root(k) is a subword of
v(k). Moreover, if
(a) k is initial and final key, then v(k) = root(k),

(b) k is initial and not final key, then v(k) is a subword of root(k)sept,
c) k is initial and not final key, then v(k) is a subword of sepsroot(k),
(d) k is not final and not initial key, then v is a subword of sepsroot(k)sep;.

Proof. Let us denote by w(k) the key word in F with k& € K as the key letter. For
any k € K let ky, ...7k_p € K be the sequence of all keys that occur in root(k). We
denote the word w(ky)...w(k,) € F* by rootf (k). Note that root? (k) is uniquely
determined.

For any separating word sep; let ki, ... k:T, be the sequence of all keys in K that
occur in sep; for j = 1,...,m. We denote the word w(k1)...w(k,) € F* by sep?.
Note that sep! is uniquely determined.

Let w be a word in the base of semiretract S and let kq,...,k, € K be the
generating key sequence for w. Let us consider the double factorization of the
word w. Assume that for any ¢ = 1,...,n the number j; € {1,...,m} is such that
Uj, <>n Vj, is the base of n—factorization colgr(k;) <y colp(ki+1). By Lemma 3.5
and by Definition 4.2.

w = root(k1)sepj, root(ka)sepj,.....sepj,  root(ky).
On the other hand, by S C F’*
w= rootF(kl)sepflrootF(kg)sepf; ..... sepiflrootF(kp).

Since any set Ry, L1, ...., R, Ly, has at least 2 elements, then the word seiji has
to be a subword of sep;,. Hence the word root? (k;) contains root(k;) as a subword.
Since any letter £ € K occurs in some word from the base of S, then the word
root(k) is a subword of root” (k) and for any j € {1,...,m} the word sep; contains
sepf as a subword.

Let k € K. If k is not final, then assume that k € R, for some s € {1,...,m}. If
k is not initial, then assume that k € L; for some ¢ € {1,...,m}. For any k € K let
v(k) (with k as the key letter) denote the word
root (k) if k is initial and final,
root (k)sep!” if k is initial and not final,
sepl'root? (k) if k is final and not initial,
septroot! (k)sepf if k is not initial and not final.

Then the key code

G ={v(k) | k € K}

makes our theorem true. O

Definition 4.5. Let wy,...,w, € AT be a sequence of words and let U(w;) <
V(w;) be an I—factorization of w; for j = 1,...,m. We say that the sequence
U(wy) <1 V(wy), ..., U(wy) < V(wy,) constitute —factorization of the sequence
Wi, ..., Wy, if and only if the columns U(w;),V(w;) for i,j = 1,...,m constitute
[—factorization only if ¢ = j.
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Hence, the sequence U; <, Vi,...,U,, <, V,, forms n—factorization of the
sequence wi, ..., W, € AT, where w; is a subword of sep; for i = 1,...,m. As
a consequence, there exists n—factorization of the sequence seps, ..., sep,, (it is
obtained by modifying a little bit the columns Uy, Vi, ..., Uy, Vin).

Suppose now that dim(S) < [. By definition S = ﬂizl F for some key codes
Fy, ..., F;. Since S C F, then by the previous lemma there exists key code G; with
the key set K such that S C Gf C F; for ¢ = 1,...,l. The form of any key word
in G; and the equality S = ﬂézl G imply, that there exist [—factorization of the
sequence sepi, ..., S€Pm,-

Suppose now that a sequence X' «<»; Y, ..., X" «<»; Y™ forms an [—factorization
of the sequence sepy, ...., sep,,. Assume that k € K is not initial and not final key.
Then k € R; and k € L; for some s,t € {1,...,m}. Let us define l-key words with
k as the key letters as follows (we use the matrix form):

Xtleft(k) k right(k)Y§

A(k) = Xfleft(k:) k: right-(k;)YiS ,

Xlleft(k) k right(k)Y

where X! and Y;* for i = 1,...,1 denote the entries in the i—th rows of columns X*
and Y'® respectively. In the case k is initial the left column of A(k) consist entirely
of left(k) and in the case k is final the right column of A(k) consist entirely of
right(k). It is not hard to verify that the intersection of I retracts with [ key codes
defined above is equal with S. As a consequence we have the following statement
true.

Theorem 4.6. Let S = (_, E;, where the sequence of key codes E\, ..., Ey, fulfills
the conditions given in Lemma 4.5. Then, dim(S) < iff there exist |—factorization
of the sequence sepi, ..., SEPm .

To verify if there exist an [—factorization of the sequence seps, ..., sep,, let us
consider a network D = (V, A) with a capacity function ¢ : A — N. Let V =
{s,t} UV1 U V4 be the set of all vertices in a digraph D = (V, A), where s,¢t € V are
respectively the source and the sink of the network,

Vi = {sep;| j € {1,...,m}}
and
Vo ={w | wis a subword of some sep;, j € {l,...,m}}.
Let
A={s,V} UEUV; x {t},
where E C V} x V4 is the set of edges defined as follows: (vi,v2) C Vi X Vo isin E

iff v9 is a subword of v;. Finally, we define the capacity function by the following
rules:

o ¢(s,v1) = x for (s,v1) € {s} x Vi if the word v; occurs exactly z times in
the sequence sepy, ..., s€py,,
o c(vy,v2) = o for (vy,v9) € E,
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o c(va,t) = max(m,l(vy,)) for (ve,t) € {va} X Vo, where I(vy) is the number
of all different [—factorization of the word vy with vy as the source. Since
such an [—factorization of vy is fully determined by the left column of
|—factorization, then

l -k
l(’l}2) = Z <k ) < k 1) (|U2| - 1)l7(k1+k2)7
ki ko> 1 kitka<l ML 2

where the term (kll) (1251) (Jvg| —1)!=(F1+k2) denotes the number of columns
with exactly:

— kq rows filled up with 1,

— ko rows filled up with vo,

— 1 — (k1 + ko) rows filled up with nonempty, proper prefix of vs.

Lemma 4.7. There exist an l—factorization of the sequence sepy, ..., sepy, iff the
mazimal flow of the network D = (V, A) with the capacity function ¢ : E — N is
equal m.

Proof. Let Uy <> Vi, ...,U,, < V,,, be an [—factorization of the sequence sep;, ..., sepm,
with the sources respectively wi, ..., w,. Let us consider the function f: A — N
defined as follows:
e f(s,v1) =c(s,vy1) for (s,v1) € {s} x V1,
o f(v1,v2) = x for (vi,v2) € E if the pair (vi,v2) occurs x time in the
sequence (8ep1, w1), ..., (S€Pm, W),
o f(ve,t) = y for (vg,t) € Vo x {t} if the word vs occurs in the sequence
W1, ..., Wy, €xactly y times.
We can easily check that f satisfy the conservation and feasibility rules and hence
f is a flow function with the flow value m. By the max-flow min-cut theorem for
the cut ({s},V '\ {s}) with the capacity m we conclude that f is the maximal flow
in the network.

Suppose now that f : A — N is a maximal flow function in the network and
the flow value is m. Let vy € V. Since the cut ({s},V \ {s}) has the capacity
m, then f(s,v1) = ¢(s,v1) = « for some z € N. Thus, the word v; occurs on the
list sepy, ..., Sepm, exactly  times. Assume, that ji,...,j. € {1,...,m} are such that
sepj, = v1 for ¢ = 1,...,x. Hence, by the conservation rule for the vertex v; there
exists a list L(v1) = wj,, ..., wj, such that wj, is the subword of v; = sep;, and any
word vy € L(v1) occurs on the list L(vq) exactly f(v1,v2) times. Hence, with any
separating word sep;, we can associate a subword w;, for all ¢ = 1, ..., z. Repeating
this step for any vertex v; € V4 we obtain a sequence ws, ..., w,, such that w; is
associated with sep; for i = 1,...,m.

Let us consider any w; for ¢ = 1,...,m and assume that w; occurs exactly y
(y € N) times on the list wy, ..., w,,. Suppose that w; = wg, = ... = Wk, for some
ki,....,ky € {1,...,m}. The conservation rule for the vertex w; € V5 and the feasibil-
ity rule for the edge (w;,t) asserts that we can find y different {—factorizations
of the word w;; let us denote them by U, < Viys s Uk, <1 Vi,. Repeat-
ing this step for any w; € {wy,...,w,} we obtain a sequence of [—factorizations
Ur =1 Vi, ..., Uy <1 Vi, where U < Vj is an [—factorization of w; for j = 1,...,m.
Note that if U' «; V! and U? «; V2 form [—factorizations with different source
words, then U',V? and U?, V! as well does not form [—factorization. It follows
that the sequence Uy < V1, ...,U,, < V,, forms the [—factorization of the sequence
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W1, ..., Wy,. Thus, sine w; is a subword of sep; for i = 1, ..., m, then there exists an
l—factorization of the sequence sepy, ..., s€pp,.
O

Assume that (Ci,...,Cy,,0) € Z. Then S = ()_, Cf. Then we compute the
sequence of key codes E1, ..., E, that satisfy the properties listed in the Lemma 4.1.
Next, we produce the sequence sepy, ..., sepy, of all separating word. We refer to [2]
to show that the list sepq, ..., sep,, can be computed in polynomial time. After all,
for the sequence sep, ..., sep,, we construct the network as presented above. The
instance (C1, ..., Cpy, 1) € DIM — SEM iff the maximal flow in the network is equal
m. Since MAX — FLOW is in P, then DIM — SEM is also in P.

5. PROBLEM MIN — SEM 1S N P-COMPLETE.

The problem MIN — SEM is in NP. For any (Cy,....,Cp,1) € T a nondeter-
ministic Turing machine indicates | key codes C;,,...,C;, € {Cy,...,Cy} for some
i1,..,9 € {1,...,m}. Next, it constructs minimal, deterministic automatons A;, As
that recognize the base of semiretracts (;_, C; and 03:1 C’fj respectively. Finally,
it tests if A; = As. In [2] the polynomial time algorithm for constructing mini-
mal, deterministic automatons that recognizes the base of semiretract is presented.
Finally, we can test if A1 = A5 in polynomial time.

We prove that 3 — SAT <p MIN — RET. Let {x1,...,xz,} be the set of all
variables that occur in the formula a = /\;n:1 o, where a; = ozjl- \Y oc? \Y a?,
j = 1,...,m. The transformation 7, for given formula «, produces 2p key codes
Cz,,Cozyyoery; Cp,, g, and the special key code denoted by Cs. We will prove
that « is satisfiable iff (Cy,,C-s,,...,Cs,,C—s,,Cs,p+1) is in MIN — SEM. Let
us describe the transformation 7 ().

All key codes Cy,,C—z,, ..., Cy,, C-z, have the same key set

K={fh,z1,...,Tp,Q1, ..., 0 }
and are defined over the alphabet
A=KU {h/,:zrll, ...,x;},ozll, ey oz;n}.

Let us fix the order Cy,,C-yy s -, Cry, Oz, Cs of all key codes. We define any key
code by giving all columns coly,(k), colg(k) for any k € K with respect to the order
Cey,Cazyy oy Coy, Cog ), Cs

For any key z;, i = 1,...,p associated with the variable z;, we define colg(x;)
putting x; at the positions that correspond to key codes C;, and C-,, and putting
1 at the other positions. For any key oy, j = 1,...,m associated with the clause
o we define colg(a;) putting oz;- at the positions that correspond to the key codes
C’a;, Caf and Ca? and putting 1 at the other positions. For the key h € K we

define colr(h) putting B at the position that correspond to the key code Cs and
putting 1 at the other positions. To make z; the one, initial key and f the one,
final key we define coly(x1) and colg(f) putting 1 on any positions. The columns
colp(z2),....,col(xp), colr(aq),....,colg(a), colr(h) and coly(f) are defined such
that the sequence of keys

(T1, T2y ey Tpy A1, A2, ey Qo By f)
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is the only one possible generating key sequence. By Lemma 3.5, the base of
semiretracts consists of exactly one word, namely

’ ’ ’ ’

zlxlxzmQ....xpxpalalaga;....ocmoclmhh/ I
Example 5.1. Let
¢ =(x1V-meVas)A(-xy Ve V-oxg) A(—zy V-ozg Voxg).
The set of all variables is equal to {x1, 22, x3}. Hence we define key codes Cy,, C—,,,
Coryy Conyy Cgy Coy, Cs with the same set of keys K = {f, h, x1, 22, 23,01, a2,a3}

over the alphabet K U {h',y1,y2,ys, a1, a2,as}. Key codes Cp,, Coz,; Cayy Cogss
Cyyy Cogy, Cs are presented in the matrix form:

r ’ T r ’ rT

r1 — [ 1z 2] L oxp 1 Ty w3 1 Ty
r = | 1o 4 1 2 1 Ty w1 7y on 1
T2 - 1 o 1 Ty T2 Ty 1 z3 1 T3 a1 1/
~xy — 1 oz 1 |, @ @2 2 |, 1 2 1 |, |23 a9 a |
T3 - 1 z; 1 R | Ty T3 Ty 1 a1 a)
r3 — 1 z 1 x,l o 1 a:lz x3 xé 1 a; 1
s — |11 =z 1 | i ([;/1 z 1 | | £L‘/2 z3 1 | | xg ap 1
mo— [ 1 a 17 [ayas 1] rTagh 17 [h 1
-y - Qg O 1 a3 o 1 h 1 h f 1
2 — | a; oy oy 1 ez 1 as b1 h: ;o1
Ty — 1 ay 1 o a3 a3 |, 1 R 1 |,|h f 1
x5 — | 1 ay 1 oy a3 1 a; ho1 Kofo1
w3 — | Ay an o 1 a3z ag 1 h 1 Kofo1

s~ Loy ax 1] [ay ag 1| Lag b W1 | 1 f 1]

The sequence (z1, o, s, a1, a0, as3,h, f) is the only one possible generating key
sequence. It follows that in the base of semiretract S there is exactly one word,
namely

xlx;IQ, SC;lEgIE;OélOéllOAQOZIQO@OZ;)th f-

Assume that the formula « is satisfiable by an assignment {y = TRUE, ....,1, =
TRUE, where [; for all j = 1,...,m is a literal from the set {z;, ~x;}. Let us fix the
order of key codes (1, , ..., Cy,, Cs. Note that colp (x;) for i = 1, ..., p relatively to the
order Cy, ..., (', Cs contains elements z; and 1 at the positions that corresponds to
the key codes C, and Cj respectively. Quite similar, coly(a;), j = 1,..., m relatively
to the order Cy,,...,C;,, Cs contains elements oz;- at the position that corresponds
to the key code indexed by the literal that makes clause o; true and contains 1 at

position that corresponds to the key code Cs. Since elements a:ll, e x;, 0/1, . a;n, n
are pairwise different then the only possible key sequence in semiretract generated

by Ci,,...,Cy,, Cs is still (21, ..., 2p, a1, ..o, @i, b, f). It follows that

p p
(Crnez)nc=(CHnc:
i=1 i=1
and hence (Cy,,C-z,,...,Cs,,C-z,,Cs,p+ 1) is in MIN — SEM.
Let (Cyy,C-zyy ., Oy, Cg), Cs,p+ 1) in MIN — SEM and assume that

Cl]?"'7clpvcl e {01:170‘@17"'7Ca7pvc‘|lp7cs}

p+1
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for some lq, ..., lp41 € {z1, 21, ..., Tp, 7Ty, s} are such that the equality
p+1

p
(Nexnes)ne:=Na
i=1 =1

is true. Since f € A* is not in the base of semiretract ﬂfil C} (more precisely, since

[ is not final key), then Cj has to be in {Cy,,...,Cy,,, }. Assume that Cs = C)_,.
Since the column colg(z;) for all i = 1, ..., p relatively to the order Cj,,...,Cy,, Cs

has to contain x; (x; is not a final key) at some position, then C,, or C_,, is in the
set Cy,,...,Cy,. It follows that an assignment Iy = TRUE,...,l, = TRUE is well
defined. Quite similar, the column colg(a;) for all j = 1,...,m with respect to the

order Cj,, ..., Cy,, Cs has to contain a; at some position, exactly at positions that

corresponds to key codes C’ajl_, C“f or CC@. Hence, there exist a literal [ € {l,...,{,}
that makes the clause o; = a]l Vv Oz} \Y a? true. Hence, « is satisfiable.
Example 5.2. Formula ¢ is satisfiable by the assignment
1 =TRUFE,zo =TRUE,~x3 = FALSE.
Let us consider blocks Ay, for all k € K relatively to Cy,,Cy,, C—sj, Cs:

_ , , /
rn — [ 1 x x 1z 1 Ty x3 1 Ty a1 o
T9 - 1 xp 1 T, Ty Ty 1 xz3 1 xg oy 1
—rs o= |1 @ 1 || &) we 17| @y a3 a 1 o 1 |7
s — [ 1z 1 x, xy 1 zy, x3 1 Ty
1 — [ 1oy 1 oy a3 1 a;r,) h 1 h: f 1
To - a; Qo Qg 1 as 1 as h 1 h f 1
—r3 — |y o ap |1 az ag |7 1 R 1 || A f 1
s = Loy an 1 oy a3 1 a; ho b 1 f 1

According to the previous considerations the key x; is still the one initial key, f
is still the one final key and key sequence (z1, w9, s, 1,0, as3,h, ) is the one
possible key sequence relatively to the order Cy,,Cy,,C-s,, Cs.
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