
SEMIRETRACTS - ALGORITHMIC PROBLEMS

TOMASZ KRAWCZYK

Jagiellonian University, Institute of Computer Science
Nawojki 11, 30-072 Krakow, Poland

krawczyk@ii.uj.edu.pl
KBN grant no 3 T11C 010 27

1. Introduction

Semiretracts of free monoids were investigated first by Jim Anderson [1] and
then were the subject of the papers - see references [1-6, 10-12, 14-15]. In the
paper [1] J.A.Anderson presented a theorem that characterizes any semiretract S

by means of two retracts Rα, Rω. Namely, he showed that for any semiretract S

there exist retracts Rα and Rω such that S = Rα ∩ Rω. In the paper [2] the
counterexample to this characteristic was given. In the sequel, in this paper we
introduce the notion of dimension of S (written dim(S)); namely, dim(S) = k iff

k is the minimal number such that S =
⋂k

i=1 Ri for some retracts R1, ..., Rk. We
present a polynomial time algorithm that test if dim(S) = k. On the other hand,
we show that a little modification of this problem is NP−complete.

2. Basic Notions And Definitions

We assume the reader is familiar with the basic notions and concepts from the
theories of semigroups and the the theories of computation.

Let A be any finite set and let A∗ denote a free monoid generated by A. The
length of a word w ∈ A∗, in symbols |w|, is defined to be the number of letters
occuring in w (the length of the empty word 1 equals 0).

A retraction r : A∗ −→ A∗ is a morphism for which r ◦ r = r. A retract R of A∗

is the image of A∗ by a retraction. A semiretract S of A∗ is the intersection of a
family of retracts of A∗. A dimension of semiretract S - written dim(S) - is equal

k iff k is the minimal number such that S =
⋂k

i=1 Ri for some retracts R1, ..., Rm.
The following theorem is due to J.A.Anderson - see [3].

Theorem 2.1. Dim(S) is finite for any semiretract S.

A word w ∈ A∗ is called a key-word if there is at least one letter in A that occurs
exactly once in w and the letter is called a key of w. A set C ⊂ A∗ of key-words is
called a key-code if there exists an injection key : C −→ A such that

(1) for any w ∈ C, key(w) is a key of w,

(2) the letter key(w) occurs in no word of C other than w itself.

Note that any key-code is in fact a code and that for a key-code C there is possible
to exist more then one injection key : C −→ A. Given a key-code C and a fixed
mapping key the set of all keys of words in C is denoted by key(C).

The following characterization of retracts is due to T. Head [?].
1
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Theorem 2.2. R ⊂ A∗ is a retract of A∗ if and only if R = C∗ where C is a
key-code.

Because we shall be dealing with the complexity problems let us define the set
of all inputs (instances) I; namely a sequence (C1, ..., Ck, l) is in I iff C1, ..., Cn

are key codes and l is a positive integer. Hence, with any (C1, ..., Cn, l) ∈ I we
can associate a semiretract S =

⋂n

i=1 C∗
i . The first decision problem (given as

a languge) DIM − SEM ⊂ I related to the dimension of semiretract can be
defined as follows: (C1, ..., Cn, l) is in DIM − SEM iff there exist l key codes

D1, ...,Dl such that
⋂n

i=1 C∗
i =

⋂l

i=1 Di. We also will consider the decision problem
MIN −SEM ⊂ I; an instance (C1, ..., Cn, l) is in MIN −SEM iff there exists key
codes Ci1 , ..., Cil

∈ {C1, ..., Cn} for some i1, ..., il ∈ {1, ..., n} such that
⋂n

i=1 C∗
i =

⋂l

j=1 C∗
ij

.
The main thesis of this paper is as follows: DIM − SEM is in P while MIN −

SEM is NP−complete.

3. Preliminary results

Let (C1, ..., Cn, k) ∈ I. In [2] W. Forys and T. Krawczyk proved the theorem
that allows us to narrow down the research on semiretracts to the case when all
considered retracts have the same, common key-set K.

Theorem 3.1. Let S = ∩n
i=1C

∗
i be a semiretract given by retracts C∗

i with key-
codes Ci ⊂ A∗ for i = 1, ..., n. There exist key-codes Di ⊂ A∗ for i = 1, ..., n such
that

(1) S ⊂ D∗
i ⊂ C∗

i for all i = 1, ..., n (it means S =
⋂n

i=1 C∗
i )

(2) key(D1) = key(D2) = ... = key(Dn).

Hence any semiretract S is an intersection of a family of retracts generated by key
codes having the common set of keys.

Let S =
⋂n

i=1 D∗
i and let D1, ...,Dn be key codes with the same set K. In the

rest of the paper we assume that any k ∈ K occurs in some word from the base of
semiretract S.

Let us fix the order of retracts - D∗
1 , ...,D∗

n. For any k ∈ K there exist words
w1 ∈ D1, ..., wn ∈ Dn all with the key k. We write this fact in a matrix form
(abbreviated n−lines):

A(k) =

















u1 k v1

...
...

...
ui k vi

...
...

...
un k vn

















.

Hence, in the first column of A(k) there are prefixes ui of wi and in the third
column there are sufixes vi of wi such that wi = uikvi for all i = 1, ..., n. The
matrix A(k) is associated with the key k ∈ K. We denote in the sequel by colL(k)
and by colR(k) the first (left) and the third column of Ak. Since k occurs in some
word from the base of semiretract S, then ui is a suffix of uj or uj is a suffix of ui

for all i, j = 1, ..., n. For the same reason wi is a prefix of wj or wj is a prefix of
wi for all i, j = 1, ..., n. If it is necessary we underline that A(k), colL(k), colR(k)
were defined relatively to the order D1, ...,Dn.
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Definition 3.2. We say that k ∈ K is initial key if colL(k) =







u
...
u






for some

u ∈ A∗. We denote the word u by left(k) as it occurs on the left site of the letter

k. We say that k ∈ K is final if colR(k) =







w
...
w






for some w ∈ A∗. We denote the

word w by right(k) as it occurs on the right site of k.

The set of all initial keys we denote by Linit. The set of all final keys we denote
by Rfinal.

Definition 3.3. It is said that columns U =







u1

...
un






and V =







v1

...
vn






form an

n−factorization of the word w ∈ A+ and it is written U ↔n V iff uivi = w for
i = 1, ..., n and there exist i, j such that ui 6= uj . Let u ∈ A∗ be the longest common
prefix of u1, ..., un and let v be the longest common suffix of v1, ..., vn. Then there
exist u

′

1, v
′

1, ..., u
′

n, v
′

n ∈ A∗ such that ui = uu
′

i and vi = v
′

iv for all i = 1, ..., n. Then

the columns U
′

=







u
′

1
...

u
′

n






and V

′

=







v
′

1
...

v
′

n






form an n−factorization of some word

w
′

∈ A+. The n−factorization U
′

↔n V
′

is called the base and the word w
′

is
called the source of the n−factorization U ↔n V .

Definition 3.4. Let k1, k2 ∈ K. We say that k2 follows k1 iff colR(k1) ↔ colL(k2)
constitutes n−factorization of some word w ∈ A+. The word w is denoted by
bk(k1, k2) as it occurs between keys k1 and k2.

The above introduced notations allows us to give a simple lemma that presents
a method for obtaining any word in the base of semiretract S =

⋂n

i=1 D∗
i .

Lemma 3.5. Let k1, ..., kp ∈ K be a sequence of keys of the semiretract S such
that (1) k1 is initial key, (2) kp is final key and ki+1 follows ki for i = 1, ..., p − 1.
Then the word

w = left(k1)k1bk(k1, k2)k2.......kp−1bk(kp−1, kp)kpright(kp)

is in the base (code) C of semiretract S. Moreover, for any word w in C there exist
keys k1, ..., kp ∈ K such that the above is true.

Any sequence of keys k1, ..., kp ∈ K fulfilling assumptions (1)-(3) is called a
generating key sequence.

Remark 3.6. Finding a word from the base of the semiretract is equivalent to finding
a sequence of keys which fulfils the conditions from the above theorem.

Example 3.7. Assume that E1, E2 and E3 are key codes with the same key set
K = {k1, k2, k3, k4, k5}.
E1 = {abk1aba, k2aa, bk3b, bk4baba, k5aa},
E2 = {abk1ab, ak2a, abk3b, abk4bab, ak5a}
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E3 = {abk1a, bak2, aabk3b, babk4ba}.
Hence A(k1),A(k2),A(k3),A(k4) and A(k5) are equal respectively





a b k1 a b a

a b k1 a b

a b k1 a



 ,





k2 a a

a k2 a

b a k2



 ,





k3 b

a k3 b

a a k3 b



 ,





b k4 b a b a

a b k4 b a b

b a b k4 b a



 and





k5 a a

a k5 a

a a k5



 .

For example:

colL(k1) =





a b

a b

a b



 , colR(k1) =





a b a

a b

a



 , colL(k2) =



 a

b a



 .

Hence k1 is initial key and k3 is final key. The key k2 follows k1, since
colR(k1) ↔3 colL(k2) form 3−factorization of the word aba. The 3−factorization




b a

b



 ↔3



 a

b a



 is the base and the word ba is the source of 3−factorization

colR(k1) ↔ colL(k2).
Since k1 is initial key, k2 follows k1, k3 follows k2 and k3 is final, then the sequence
k1, k2, k3 is the generating key sequence. Hence the word

left(k1)k1bk(k1, k2)k2bk(k2, k3)k3right(k3) = abk1abak2aak3b

is in the base of semiretract E∗
1 ∩ E∗

2 ∩ E∗
3 .

4. The problem DIM − SEM is in P .

Suppose now that (C1, ..., Cn, l) ∈ I. By the previous paragraph there exists a
sequence of key codes D1, ...,Dn with the same set of keys K such that S =

⋂n

i=1 D∗
i .

Let k1, k2 ∈ K be any keys such that k2 follows k1. Assume that n−factorization
U ↔n V is the base of colR(k1) ↔n colL(k2). If k3 and k4 are such that k4

follows k3 and the base of n−factorization colR(k3) ↔n colL(k4) is equal U ↔n V ,
then k4 follows k1 and k2 follows k3 as well and the bases of n−factorizations
colR(k1) ↔n colR(k4) and colL(k3) ↔n colR(k2) are equal U ↔n V . Hence, with
the pair U ↔n V we can associate two sets R,L ⊂ K such that for all k ∈ R, k ∈ L

the key k follows k and the base of n−factorization colR(k) ↔n colL(k) is equal
U ↔n V .

Let us denote by B(D1, ...,Dn) the set of all n−factorizations that occur as
the base of n−factorization colR(k) ↔ colL(k) for some k, k ∈ K such that k

follows k. It may happen that the set R or L associated with an element U ↔n

V ∈ B(D1, ...,Dn) consists of exactly one element. Suppose that L = {l} and
R = {r1, ..., rm} for some l, r1, ..., rm ∈ K. Note that in any generating key sequence
the key l has to occur after any ri whenever ri occurs in a generating key sequence.
Let us define for i = 1, ..., n

D
′

i = (Di \ {vi(l), vi(r1), ..., vi(rm)}) ∪ {vi(r1)vi(l), ..., vi(rm)vi(l)},

where vi(k) for any k ∈ K denotes key word in Di with k as the key letter. Of

course, for i = 1, ..., n the set D
′

i is a key code (fix the letter rj as the key of word

vi(l)vi(rj) for j = 1, ...,m). By the previous considerations S =
⋂n

i=1 D
′

i. Note
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that the number of elements in B(D
′

1, ...,D
′

n) relatively to B(D1, ...,Dn) diminish
to 1. We could repeat the following procedure in the case R consists of exactly one
element. Hence, we can state:

Lemma 4.1. Let S =
⋂n

i=1 D∗
i and let D1, ...,Dn be key codes with the same key

set K. Then there exist key codes E1, ..., En such that

(1) S ⊂ E∗
i ⊂ D∗

i for i = 1, ...., n (it means S =
⋂n

i=1 E∗
i )

(2) key(E1) = key(E2) = ... = key(En)
(3) if U ↔n V ∈ B(E1, ..., En) then the sets R,L associated with U ↔n V have

at least two members.

Suppose now that S =
⋂n

i=1 E∗
i and the sequence E1, ..., En fulfills the properties

listed in the previous lemma.

Definition 4.2. Let U ↔n V ∈ B(C1, ..., Cn) be an n−factorization of the word
w1 ∈ A+. Let L,R ⊂ K be associated with U ↔n V . We say that w2 ∈ A+

separates R and L iff w2 is the word of the maximal length containing w1 and the
equality

{kbk(k, k)k | k ∈ R, k ∈ L} = {kright(k)w2left(k)k | k ∈ R, k ∈ L}

is true for some words right(k), left(k) ∈ A∗. For any k ∈ K the word left(k)kright(k)
is now defined and we denote this word by root(k). Note that the word w2 is prop-
erly defined. It may happened that w1 = w2 of course.

Let us fix the order of all members of the set B(E1, ..., En) - U1 ↔n V1, ..., Um ↔n

Vn. Assume that sets Rj , Lj ⊂ K are associated with the base Uj ↔n Vj and
denote the separating word for the pair Rj , Lj by sepj . Note that the families
{Linit, L1, ..., Lm} and {Rfinal, R1, ..., Rm} constitute the partitions of the set K.
Note that by the previous lemma every set of those families except Linit or Rfinal

has to contain at least 2 members.

Example 4.3.

B(E1, E2, E3) =











b a

b



 ↔3



 a

b a



 ,





a a

a



 ↔3



 a

a a











.

Linit = {k1}, L1 = {k2, k4}, L2 = {k3, k5}.
Rfinal = {k3}, R1 = {k1, k4}, R2 = {k2, k5}.
The families {Linit, L1, L2} and {Rfinal, R1, R2}, where R1, L1 and R2, L2 are as-
sociated respectively with the first and the second element of B(E1, ..., En), form
the partitions of the set K.
The word aba ∈ A+ separates R1 and L1. The word aa separates R2 and L2.
The roots of k1, k2, k3, k4 and k5 are equal respectively bak1, k2, k3b, bk4b, k5.

Now we are ready to give the basic for our considerations lemma.

Lemma 4.4. Let S =
⋂n

i=1 E∗
i be a semiretract such that the sequence of key codes

E1, ..., En with a common key set K fulfills the conditions given in Lemma 4.1.
Then, for any key code F with key set K such that S ⊂ F ∗ there exists a key code
G with K as the key set such that

(1) S ⊂ G∗ ⊂ F ∗
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(2) Let k ∈ K. Assume that if k is not final, then k ∈ Rs for some s ∈ {1, ...,m}
and if k is not initial, then k ∈ Lt for some t ∈ {1, ...,m}. If v(k) ∈ G

is the key word with k ∈ K as the key letter, then root(k) is a subword of
v(k). Moreover, if
(a) k is initial and final key, then v(k) = root(k),
(b) k is initial and not final key, then v(k) is a subword of root(k)sept,
(c) k is initial and not final key, then v(k) is a subword of sepsroot(k),
(d) k is not final and not initial key, then v is a subword of sepsroot(k)sept.

Proof. Let us denote by w(k) the key word in F with k ∈ K as the key letter. For
any k ∈ K let k1, ..., kp ∈ K be the sequence of all keys that occur in root(k). We

denote the word w(k1)...w(kp) ∈ F ∗ by rootF (k). Note that rootF (k) is uniquely
determined.

For any separating word sepj let k1, ..., kp be the sequence of all keys in K that

occur in sepj for j = 1, ...,m. We denote the word w(k1)...w(kp) ∈ F ∗ by sepF
j .

Note that sepF
j is uniquely determined.

Let w be a word in the base of semiretract S and let k1, ..., kp ∈ K be the
generating key sequence for w. Let us consider the double factorization of the
word w. Assume that for any i = 1, ..., n the number ji ∈ {1, ...,m} is such that
Uji

↔n Vji
is the base of n−factorization colR(ki) ↔n colL(ki+1). By Lemma 3.5

and by Definition 4.2.

w = root(k1)sepj1root(k2)sepj2 .....sepjp−1
root(kp).

On the other hand, by S ⊂ F ∗

w = rootF (k1)sep
F
j1

rootF (k2)sep
F
j2

.....sepF
jp−1

rootF (kp).

Since any set R1, L1, ...., Rm, Lm has at least 2 elements, then the word sepF
ji

has

to be a subword of sepji
. Hence the word rootF (ki) contains root(ki) as a subword.

Since any letter k ∈ K occurs in some word from the base of S, then the word
root(k) is a subword of rootF (k) and for any j ∈ {1, ...,m} the word sepj contains
sepF

j as a subword.
Let k ∈ K. If k is not final, then assume that k ∈ Rs for some s ∈ {1, ...,m}. If

k is not initial, then assume that k ∈ Lt for some t ∈ {1, ...,m}. For any k ∈ K let
v(k) (with k as the key letter) denote the word

• rootF (k) if k is initial and final,
• rootF (k)sepF

t if k is initial and not final,
• sepF

s rootD(k) if k is final and not initial,
• sepF

s rootF (k)sepF
t if k is not initial and not final.

Then the key code

G = {v(k) | k ∈ K}

makes our theorem true. ¤

Definition 4.5. Let w1, ..., wm ∈ A+ be a sequence of words and let U(wj) ↔
V (wj) be an l−factorization of wj for j = 1, ...,m. We say that the sequence
U(w1) ↔l V (w1), ..., U(wm) ↔l V (wm) constitute l−factorization of the sequence
w1, ..., wm if and only if the columns U(wi), V (wj) for i, j = 1, ...,m constitute
l−factorization only if i = j.
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Hence, the sequence U1 ↔n V1, ..., Um ↔n Vm forms n−factorization of the
sequence w1, ..., wm ∈ A+, where wi is a subword of sepi for i = 1, ...,m. As
a consequence, there exists n−factorization of the sequence sep1, ..., sepm (it is
obtained by modifying a little bit the columns U1, V1, ..., Um, Vm).

Suppose now that dim(S) ≤ l. By definition S =
⋂l

i=1 F ∗
i for some key codes

F1, ..., Fl. Since S ⊂ F ∗
i , then by the previous lemma there exists key code Gi with

the key set K such that S ⊂ G∗
i ⊂ F ∗

i for i = 1, ..., l. The form of any key word

in Gi and the equality S =
⋂l

i=1 G∗
i imply, that there exist l−factorization of the

sequence sep1, ..., sepm.
Suppose now that a sequence X1 ↔l Y 1, ....,Xm ↔l Y m forms an l−factorization

of the sequence sep1, ...., sepm. Assume that k ∈ K is not initial and not final key.
Then k ∈ Rs and k ∈ Lt for some s, t ∈ {1, ...,m}. Let us define l-key words with
k as the key letters as follows (we use the matrix form):

A(k) =

















Xt
1left(k) k right(k)Y s

1
...

...
...

Xt
i left(k) k right(k)Y s

i

...
...

...
Xt

l left(k) k right(k)Y s
l

















,

where Xt
i and Y s

i for i = 1, ..., l denote the entries in the i−th rows of columns Xt

and Y s respectively. In the case k is initial the left column of A(k) consist entirely
of left(k) and in the case k is final the right column of A(k) consist entirely of
right(k). It is not hard to verify that the intersection of l retracts with l key codes
defined above is equal with S. As a consequence we have the following statement
true.

Theorem 4.6. Let S =
⋂n

i=1 Ei, where the sequence of key codes E1, ..., En fulfills
the conditions given in Lemma 4.5. Then, dim(S) ≤ l iff there exist l−factorization
of the sequence sep1, ..., sepm.

To verify if there exist an l−factorization of the sequence sep1, ..., sepm let us
consider a network D = (V,A) with a capacity function c : A → N. Let V =
{s, t}∪V1 ∪V2 be the set of all vertices in a digraph D = (V,A), where s, t ∈ V are
respectively the source and the sink of the network,

V1 = {sepj | j ∈ {1, ...,m}}

and

V2 = {w | w is a subword of some sepj , j ∈ {1, ...,m}}.

Let

A = {s, V1} ∪ E ∪ V2 × {t},

where E ⊂ V1 × V2 is the set of edges defined as follows: (v1, v2) ⊂ V1 × V2 is in E

iff v2 is a subword of v1. Finally, we define the capacity function by the following
rules:

• c(s, v1) = x for (s, v1) ∈ {s} × V1 if the word v1 occurs exactly x times in
the sequence sep1, ..., sepm,

• c(v1, v2) = ∞ for (v1, v2) ∈ E,
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• c(v2, t) = max(m, l(vn)) for (v2, t) ∈ {v2} × V2, where l(v2) is the number
of all different l−factorization of the word v2 with v2 as the source. Since
such an l−factorization of v2 is fully determined by the left column of
l−factorization, then

l(v2) =
∑

k1,k2≥1,k1+k2≤l

(

l

k1

)(

l − k1

k2

)

(|v2| − 1)l−(k1+k2),

where the term
(

l
k1

)(

l−k1

k2

)

(|v2|−1)l−(k1+k2) denotes the number of columns
with exactly:

– k1 rows filled up with 1,
– k2 rows filled up with v2,
– l − (k1 + k2) rows filled up with nonempty, proper prefix of v2.

Lemma 4.7. There exist an l−factorization of the sequence sep1, ..., sepm iff the
maximal flow of the network D = (V,A) with the capacity function c : E → N is
equal m.

Proof. Let U1 ↔l V1, ..., Um ↔l Vm be an l−factorization of the sequence sep1, ..., sepm

with the sources respectively w1, ..., wn. Let us consider the function f : A → N

defined as follows:

• f(s, v1) = c(s, v1) for (s, v1) ∈ {s} × V1,
• f(v1, v2) = x for (v1, v2) ∈ E if the pair (v1, v2) occurs x time in the

sequence (sep1, w1), ..., (sepm, wm),
• f(v2, t) = y for (v2, t) ∈ V2 × {t} if the word v2 occurs in the sequence

w1, ..., wm exactly y times.

We can easily check that f satisfy the conservation and feasibility rules and hence
f is a flow function with the flow value m. By the max-flow min-cut theorem for
the cut ({s}, V \ {s}) with the capacity m we conclude that f is the maximal flow
in the network.

Suppose now that f : A → N is a maximal flow function in the network and
the flow value is m. Let v1 ∈ V1. Since the cut ({s}, V \ {s}) has the capacity
m, then f(s, v1) = c(s, v1) = x for some x ∈ N. Thus, the word v1 occurs on the
list sep1, ..., sepm exactly x times. Assume, that j1, ..., jx ∈ {1, ...,m} are such that
sepji

= v1 for i = 1, ..., x. Hence, by the conservation rule for the vertex v1 there
exists a list L(v1) = wj1 , ..., wjk

such that wji
is the subword of v1 = sepji

and any
word v2 ∈ L(v1) occurs on the list L(v1) exactly f(v1, v2) times. Hence, with any
separating word sepji

we can associate a subword wji
for all i = 1, ..., x. Repeating

this step for any vertex v1 ∈ V1 we obtain a sequence w1, ..., wm such that wi is
associated with sepi for i = 1, ...,m.

Let us consider any wi for i = 1, ...,m and assume that wi occurs exactly y

(y ∈ N) times on the list w1, ..., wm. Suppose that wi = wk1
= ... = wky

for some
k1, ..., ky ∈ {1, ...,m}. The conservation rule for the vertex wi ∈ V2 and the feasibil-
ity rule for the edge (wi, t) asserts that we can find y different l−factorizations
of the word wi; let us denote them by Uk1

↔l Vk1
, ..., Uky

↔l Vky
. Repeat-

ing this step for any wi ∈ {w1, ..., wm} we obtain a sequence of l−factorizations
U1 ↔l V1, ...., Um ↔l Vm, where Uj ↔ Vj is an l−factorization of wj for j = 1, ...,m.
Note that if U1 ↔l V 1 and U2 ↔l V 2 form l−factorizations with different source
words, then U1, V 2 and U2, V 1 as well does not form l−factorization. It follows
that the sequence U1 ↔l V1, ..., Um ↔l Vm forms the l−factorization of the sequence
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w1, ..., wm. Thus, sine wi is a subword of sepi for i = 1, ...,m, then there exists an
l−factorization of the sequence sep1, ..., sepm.

¤

Assume that (C1, ..., Cm, l) ∈ I. Then S =
⋂n

i=1 C∗
i . Then we compute the

sequence of key codes E1, ..., En that satisfy the properties listed in the Lemma 4.1.
Next, we produce the sequence sep1, ..., sepm of all separating word. We refer to [2]
to show that the list sep1, ..., sepm can be computed in polynomial time. After all,
for the sequence sep1, ..., sepm we construct the network as presented above. The
instance (C1, ..., Cm, l) ∈ DIM −SEM iff the maximal flow in the network is equal
m. Since MAX − FLOW is in P , then DIM − SEM is also in P .

5. Problem MIN − SEM is NP -complete.

The problem MIN − SEM is in NP . For any (C1, ...., Cn, l) ∈ I a nondeter-
ministic Turing machine indicates l key codes Ci1 , ..., Cil

∈ {C1, ..., Cn} for some
i1, ..., il ∈ {1, ...,m}. Next, it constructs minimal, deterministic automatons A1, A2

that recognize the base of semiretracts
⋂n

i=1 C∗
i and

⋂l

j=1 C∗
ij

respectively. Finally,

it tests if A1 = A2. In [2] the polynomial time algorithm for constructing mini-
mal, deterministic automatons that recognizes the base of semiretract is presented.
Finally, we can test if A1 = A2 in polynomial time.

We prove that 3 − SAT ≤P MIN − RET . Let {x1, ..., xp} be the set of all
variables that occur in the formula α =

∧m

j=1 αj , where αj ≡ α1
j ∨ α2

j ∨ α3
j ,

j = 1, ...,m. The transformation T , for given formula α, produces 2p key codes
Cx1

, C¬x1
, ...., Cxp

, C¬xp
and the special key code denoted by Cs. We will prove

that α is satisfiable iff (Cx1
, C¬x1

, ..., Cxp
, C¬xp

, Cs, p + 1) is in MIN − SEM . Let
us describe the transformation T (α).

All key codes Cx1
, C¬x1

, ...., Cxp
, C¬xp

have the same key set

K = {f, h, x1, ..., xp, α1, ..., αm}

and are defined over the alphabet

A = K ∪ {h
′

, x
′

1, ..., x
′

p, α
′

1, ..., α
′

m}.

Let us fix the order Cx1
, C¬x1

, ...., Cxp
, C¬xp

, Cs of all key codes. We define any key
code by giving all columns colL(k), colR(k) for any k ∈ K with respect to the order
Cx1

, C¬x1
, ..., Cxp

, C¬xp
, Cs.

For any key xi, i = 1, ..., p associated with the variable xi, we define colR(xi)

putting x
′

i at the positions that correspond to key codes Cxi
and C¬xi

and putting
1 at the other positions. For any key αj , j = 1, ...,m associated with the clause

αj we define colR(αj) putting α
′

j at the positions that correspond to the key codes
Cα1

j
, Cα2

j
and Cα3

j
and putting 1 at the other positions. For the key h ∈ K we

define colR(h) putting h
′

at the position that correspond to the key code Cs and
putting 1 at the other positions. To make x1 the one, initial key and f the one,
final key we define colL(x1) and colR(f) putting 1 on any positions. The columns
colL(x2), ...., colL(xp), colL(α1),....,colR(αm), colL(h) and colL(f) are defined such
that the sequence of keys

(x1, x2, ..., xp, α1, α2, ...., αm, h, f)
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is the only one possible generating key sequence. By Lemma 3.5, the base of
semiretracts consists of exactly one word, namely

x1x
′

1x2x
′

2....xpx
′

pα1α
′

1α2α
′

2....αmα
′

mhh
′

f.

Example 5.1. Let

φ ≡ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

The set of all variables is equal to {x1, x2, x3}. Hence we define key codes Cx1
, C¬x1

,
Cx2

, C¬x2
, Cx3

, C¬x3
, Cs with the same set of keys K = {f, h, x1, x2, x3, α1, α2, α3}

over the alphabet K ∪ {h
′

, y1, y2, y3, a1, a2, a3}. Key codes Cx1
, C¬x1

, Cx2
, C¬x2

,
Cx3

, C¬x3
, Cs are presented in the matrix form:

x1 −
¬x1 −
x2 −
¬x2 −
x3 −
¬x3 −
s −





















1 x1 x
′

1

1 x1 x
′

1

1 x1 1
1 x1 1
1 x1 1
1 x1 1
1 x1 1





















,























1 x2 1
1 x2 1

x
′

1 x2 x
′

2

x
′

1 x2 x
′

2

x
′

1 x2 1

x
′

1 x2 1

x
′

1 x2 1























,























x
′

2 x3 1

x
′

2 x3 1
1 x3 1
1 x3 1

x
′

2 x3 x
′

3

x
′

2 x3 x
′

3

x
′

2 x3 1























,























x
′

3 α1 α
′

1

x
′

3 α1 1

x
′

3 α1 1

x
′

3 α1 α
′

1

1 α1 α
′

1

1 α1 1

x
′

3 α1 1























,

x1 −
¬x1 −
x2 −
¬x2 −
x3 −
¬x3 −
s −





















1 α2 1

α
′

1 α2 α
′

2

α
′

1 α2 α
′

2

1 α2 1
1 α2 1

α
′

1 α2 α
′

2

α
′

1 α2 1





















,























α
′

2 α3 1

1 α3 α
′

3

1 α3 1

α
′

2 α3 α
′

3

α
′

2 α3 1

1 α3 α
′

3

α
′

2 α3 1























,





















α
′

3 h 1
1 h 1

α
′

3 h 1
1 h 1

α
′

3 h 1
1 h 1

α
′

3 h h
′





















,























h
′

f 1

h
′

f 1

h
′

f 1

h
′

f 1

h
′

f 1

h
′

f 1
1 f 1























.

The sequence (x1, x2, x3, α1, α2, α3, h, f) is the only one possible generating key
sequence. It follows that in the base of semiretract S there is exactly one word,
namely

x1x
′

1x2, x
′

2x3x
′

3α1α
′

1α2α
′

2α3α
′

3hh
′

f.

Assume that the formula α is satisfiable by an assignment l1 = TRUE, ...., lp =
TRUE, where lj for all j = 1, ...,m is a literal from the set {xj ,¬xj}. Let us fix the
order of key codes Cl1 , ..., Clp , Cs. Note that colL(xi) for i = 1, ..., p relatively to the
order Cl1 , ..., Clp , Cs contains elements xi and 1 at the positions that corresponds to
the key codes Cli and Cs respectively. Quite similar, colL(αj), j = 1, ...,m relatively

to the order Cl1 , ..., Clp , Cs contains elements α
′

j at the position that corresponds
to the key code indexed by the literal that makes clause αj true and contains 1 at

position that corresponds to the key code Cs. Since elements x
′

1, ..., x
′

p, α
′

1, ..., α
′

m, h
′

are pairwise different then the only possible key sequence in semiretract generated
by Cl1 , ..., Clp , Cs is still (x1, ..., xp, α1, ...., αm, h, f). It follows that

(

p
⋂

i=1

C∗
xi

∩ C∗
¬xi

) ∩ C∗
s = (

p
⋂

i=1

C∗
li
) ∩ C∗

s

and hence (Cx1
, C¬x1

, ..., Cxp
, C¬xp

, Cs, p + 1) is in MIN − SEM .
Let (Cx1

, C¬x1
, ..., Cxp

, C¬xp
, Cs, p + 1) in MIN − SEM and assume that

Cl1 , ..., Clp , Clp+1
∈ {Cx1

, C¬x1
, ..., Cxp

, C¬xp
, Cs}
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for some l1, ..., lp+1 ∈ {x1,¬x1, ..., xp,¬xp, s} are such that the equality

(

p
⋂

i=1

C∗
xi

∩ C∗
¬xi

) ∩ C∗
s =

p+1
⋂

i=1

C∗
li

is true. Since f ∈ A∗ is not in the base of semiretract
⋂p+1

i=1 C∗
li

(more precisely, since
f is not final key), then Cs has to be in {Cl1 , ..., Clp+1

}. Assume that Cs = Clp+1
.

Since the column colR(xi) for all i = 1, ..., p relatively to the order Cl1 , ..., Clp , Cs

has to contain x
′

i (xi is not a final key) at some position, then Cxi
or C¬xi

is in the
set Cl1 , ..., Clp . It follows that an assignment l1 = TRUE, ..., lp = TRUE is well
defined. Quite similar, the column colR(αj) for all j = 1, ...,m with respect to the

order Cl1 , ..., Clp , Cs has to contain α
′

j at some position, exactly at positions that
corresponds to key codes Cα1

j
, Cα2

j
or Cα3

1
. Hence, there exist a literal l ∈ {l1, ..., lp}

that makes the clause αj ≡ α1
j ∨ α1

j ∨ α3
j true. Hence, α is satisfiable.

Example 5.2. Formula φ is satisfiable by the assignment

x1 = TRUE, x2 = TRUE,¬x3 = FALSE.

Let us consider blocks Ak for all k ∈ K relatively to Cx1
, Cx2

, C¬x3
, Cs:

x1 −
x2 −
¬x3 −
s −









1 x1 x
′

1

1 x1 1
1 x1 1
1 x1 1









,









1 x2 1

x
′

1 x2 x
′

2

x
′

1 x2 1

x
′

1 x2 1









,









x
′

2 x3 1
1 x3 1

x
′

2 x3 x
′

3

x
′

2 x3 1









,









x
′

3 α1 α
′

1

x
′

3 α1 1
1 α1 1

x
′

3 α1 1









,

x1 −
x2 −
¬x3 −
s −









1 α2 1

α
′

1 α2 α
′

2

α
′

1 α2 α
′

2

α
′

1 α2 1









,









α
′

2 α3 1
1 α3 1

1 α3 α
′

3

α
′

2 α3 1









,









α
′

3 h 1

α
′

3 h 1
1 h 1

α
′

3 h h
′









,









h
′

f 1

h
′

f 1

h
′

f 1
1 f 1









.

According to the previous considerations the key x1 is still the one initial key, f

is still the one final key and key sequence (x1, x2, x3, α1, α2, α3, h, f) is the one
possible key sequence relatively to the order Cx1

, Cx2
, C¬x1

, Cs.
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