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1, 2 Conjecture
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AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

February 14, 2007

Abstract

Let us assign weights to the edges and vertices of a simple graph
G. As a result we obtain a vertex-colouring of G by sums of weights
assigned to the vertex and its adjacent edges. Can we receive a proper
coloring using only weights 1 and 2 for an arbitrary G?

We give a positive answer for bipartite and complete graphs and
for the ones with ∆(G) 6 3.

1 Introduction

A k-total-weighting of a simple graph G is an assignment of an integer weight,
w(e), w(v) ∈ {1, . . . , k} to each edge e and each vertex v of G. The k-total-
weighting is neighbour-distinguishing (or vertex colouring, see [1]) if for every
edge uv, w(u) +

∑
e3u w(e) 6= w(v) +

∑
e3v w(e). In such a case we say that

G permits a neighbour-distinguishing k-total-weighting. The smallest k for
which G permits a neighbour-distinguishing k-total-weighting we denote by
τ(G).

Similar parameter, but in the case of an edge (not total) weighting was
introduced and studied in [2] by Karoński,  Luczak and Thomason. They
asked if each, except for a single edge, simple connected graph permits a
neighbour-distinguishing 3-edge-weighting, and showed that this statement
holds e.g. for 3-colourable graphs. It is also known, see [1], that each nice (not
containing a connected component which has only one edge) graph permits a
neighbour-distinguishing 16-edge-weighting, hence the considered parameter
is finite.
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Note that if a graph permits a neighbour-distinguishing k-edge-weighting,
then it also permits a neighbour-distinguishing k-total-weighting (it is enough
to put ones at all vertices), hence we obtain an upper bound τ(G) 6 16 for all
graphs and τ(G) 6 3 for 3-colourable graphs (for all graphs if the conjecture
of Karoński,  Luczak and Thomason holds). Therefore, we formulate the
following conjecture.

Conjecture 1 Every simple graph permits a neighbour-distinguishing 2-total-
weighting.

It might seem quite plausible in the face of the result of Addarrio-Berry,
Dalal and Reed from [1], which say that for any fixed p ∈ (0, 1) the random
graph Gn,p asymptotically almost surely permits neighbour-distinguishing 2-
edge-weighting. In the following section we shall show that Conjecture 1
holds for bipartite and complete graphs and for graphs with ∆(G) 6 3, see
Theorem 7.

It is also worth mentioning here that our reasonings correspond with the
recent study of Bača, Jendrol, Miller and Ryan. In [3] they introduced and
studied a parameter called total vertex irregularity strength, which is the
smallest k for which there exists a k-total-weighting such that each vertex of
a graph receive a different colour, i.e. w(u) +

∑
e3u w(e) 6= w(v) +

∑
e3v w(e)

for each (not only neighbouring ones) pair of vertices u, v. This parameter,
as well as the other parameters mentioned in this section, may be viewed as
descendants of the well known irregularity strength of a graph, see [4].

2 Results

Our aim is to show that τ(G) 6 2 for a graph G. Note then first that
τ(G) = 1 iff each two neighbours have different degrees in G. Since we wish
to distinguish only neighbours, we may assume that G is a simple connected
graph. Let for a given total-weighting w of G, cw(v) := w(v) +

∑
e3v w(e)

(or c(v) for short if the weighting w is obvious). For the convenience of the
notation we shall call w a labelling (of the vertices and edges) and cw (or c)
a weighting of the vertices of G in what follows. Surprisingly easily we may
prove the following statement.

Observation 2 τ(G) 6 2 for bipartite graphs.

Proof. Let us first arbitrarily label the edges of G using 1 or 2. Then put
1 or 2 at vertices so that the resulting weights of the vertices in one colour

2



class are even and odd in the other one.

Note that τ(G) = 2 if G is a single edge, hence our parameter makes sense
for all, not only nice (as it was in the case of edge-weighting), graphs.

Though the following observation is the consequence of [3], we present
here our proof for the cohesion of the article.

Observation 3 τ(G) = 2 for complete graphs.

Proof. For K2 it is enough to put 1 on the edge and different numbers, namely
1 and 2, at vertices. This way, the weights of vertices equal 2 and 3. Then
we use induction to show that we can always label Kn using 1 and 2 so that
its vertices obtain weights being n consecutive integers.

Assume we have already labelled a graph Kn−1 in the described way and
let us add a new vertex v joining it by a single edge with each vertex of
Kn−1. Notice that the vertices of Kn−1 obtained weights from the interval
[n−1, 2n−2]. If the greatest of them equals 2n−3, we put twos at v and on
all the edges incident with it. This way, the vertices of Kn obtain n different
weights from the interval [n + 1, 2n]. Analogously, if the greatest weight at
a vertex of Kn−1 equals 2n − 2, we put ones at vertex v and all the edges
incident with it.

Lemma 4 τ(G) = 2 for cycles (hence also for 2-regular graphs).

Proof. To label an even cycle it is enough to put ones on all the edges and
then alternately ones and twos at vertices along the cycle.

Since τ(C3) = 2 by Observation 3, we may assume G is an odd cycle
of size at least 5 with v, u, w being consecutive vertices on this cycle. Then
create an even cycle G′ of G by removing u and adding an edge vw. Such a
graph we label as described in the previous paragraph. Then we delete the
edge vw and exchange the labels of v and w, and finally put twos at u and
on the edges incident with it. It is easy to verify that the resulting labelling
complies with our requirements.

Lemma 5 τ(G) = 2 for cubic graphs.

Proof. Let G be a connected cubic graph. If G = K4, then we are done
by Observation 3, hence we may assume G 6= K4. By Brooks’s theorem
χ(G) ≤ 3. If χ(G) = 2, then G is bipartite and the statement follows by
Observation 2. So, let us consider the case χ(G) = 3. Denote by A, B and
C the colour classes of G. Without loss of generality we may assume that A
is as large as possible, and, subject to the choice of A, B is also as large as
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possible. This implies, in particular, that each vertex from B∪C has at least
one neighbour in A and that each vertex from C has at least one neighbour
in B. We define a labelling w in the following way. First, we label the edges
between A and B ∪ C by 2 and the edges between B and C by 1. Next we
label the vertices.

All the vertices from A get label 2. This way, all the vertices from A have
total weights equal to 8. For each vertex belonging to B ∪C we then choose
a label 1 or 2 in such a way that the total weights of the vertices from B
are odd and the total weights of vertices from C are even. Since each vertex
from C is incident with at least one edge labelled with 1, their total weights
cannot exceed 7, so, these total weights are at most 6. Therefore, the above
procedure gives a labelling with total weight distinct for vertices belonging
to distinct sets of partition.

Remark 6 Analogous reasoning results in conclusion that τ(G) = 2 for all
regular tripartite graphs.

Theorem 7 τ(G) 6 2 for all graphs with ∆(G) 6 3.

Proof. The theorem holds for a single edge, thus we argue by induction on
the number of edges of G, where G is connected.

If δ(G) = 3, then G is a cubic graph and we are done by Lemma 5.
If δ(G) = 1 and NG(v) = {u}, we label a graph G − v by induction and

delete the label of u. Notice that using labels 1 or 2 at u and on vu we
may add 2, 3 or 4 to the total weight of u. Therefore, since u has at most
two neighbours different from v in G, we easily differentiate u from them
by putting 1 or 2 at u and on vu. Then we complete the labelling of G by
putting 1 or 2 at v, so that the weights at v and u are different.

The case δ(G) = 2 = ∆(G) was discussed in Lemma 4.
Therefore, we may assume δ(G) = 2 and ∆(G) = 3. A sequence v0, v1, . . . ,

vn (n > 2) of vertices of G we shall call a suspended trail of length n iff
vi−1vi are edges of G for i = 1, . . . , n, dG(v0) = 3 = dG(vn) and dG(vj) = 2
for 0 < j < n (notice, we do not require v0 and vn to be distinct). Let
v0, v1, . . . , vn be the longest suspended trail in G. Assume first its length is
at least four and v0 6= vn or is at least five and v0 = vn. In such a case,
if we remove v1, v2 (hence also three edges) from G and add an edge v0v3,
then v0, v3, v4, . . . , vn will be a suspended trail in the resulting graph G′. We
may label then G′ by induction and extend this labelling to G. First remove
v0v3 and put w(v0v1) = w(v0v3), w(v1v2) = w(v3v4), w(v2v3) = w(v0v3),
w(v1) = w(v3). This way the total weights of v1 and v3 are the same as the
weight of v3 in G′, and it is easy to complete the labelling by putting 1 or 2
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at v2 so that its weight is different from the weight of v1 (and v3). Therefore,
we may assume the length of the suspended trail is quite small, hence we
distinguish the following six cases.

Case 1: n = 4 and v0 = vn. Then we remove v1, v2, v3 from G and label the
resulting graph G′ by induction. Then we label the edges vi−1vi, i=1,2,3,4,
with ones. Then we change (if necessary) the label of v0 so that its weight
is different from the weight of its only neighbour from G′. Subsequently, we
label v1 and v3 with the same number so that their weights are different from
the weight of v0. Since the weights of v1 and v3 are the same, we easily choose
the label for v2.

Case 2: n = 3 and v0 = vn. Analogously, we remove v1, v2 from G and label
the resulting graph G′ by induction. Then we put w(v0v1) = 1, w(v1) = 1,
w(v1v2) = 1, w(v2) = 1 and w(v2v0) = 2. Then we change (if necessary) the
label of v0 so that its weight is different from the weight of its only neighbour
from G′. Since then c(v1) = 3, c(v2) = 4 and c(v0) > 5, this labelling is
neighbour-distinguishing.

Case 3: n = 2, v0 6= vn and v0vn ∈ E(G). Then we remove v1 and v0v2 from
G and label the resulting graph G′ by induction (though G′ may not be con-
nected, we can label each of its connected components independently). Then
we put w(v1) = 1, w(v1v2) = 1, w(v2v0) = 2 and relabel v2 (if necessary)
so that its weight is different from the weight of its only neighbour from G′.
Then we label v0 and v0v1 so that the weight of v0 is different from the weights
of its only neighbour from G′ and v2. By our construction c(v0), c(v2) > 5
and c(v1) 6 4, hence this labelling is neighbour-distinguishing.

Case 4: n = 3, v0 6= vn and v0vn ∈ E(G). Analogously, we remove v1, v2

and v0v3 from G and label the resulting graph G′ by induction. Then we put
w(v1v2) = 1, w(v2) = 1, w(v2v3) = 1, w(v3v0) = 2 and relabel v3 (if neces-
sary) so that its weight is different from the the weight of its only neighbour
from G′. Then we label v0 and v0v1 so that the weight of v0 is different
from the weights of its only neighbour from G′ and v3. By our construction
c(v0), c(v3) > 5 and c(v2) = 3, hence it is enough to put 1 or 2 at v1, so that
c(v1) = 4.

Case 5: n = 2, v0 6= vn and v0vn /∈ E(G). Then we remove v1 from G and
add an edge v0v2. The resulting graph G′ (it may be a cubic graph) we label
by induction. If w(v0v2) = 1, then we remove the edge v0v2 and put ones on
v0v1, v1v2 and at v1. This way the weights of v0 and v2 remain unchanged
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and are greater than three, while c(v1) = 3. Therefore, we may assume
w(v0v2) = 2, w(v0) = a and w(v2) = b. Then we remove the edge v0v2, put
w(v0v1) = a, w(v1v2) = b and change the labels at v0 and v2 to twos. This
way, the weights of v0 and v2 remain as they were in G′. Finally, we put one
at v1 and obtain c(v1) = a + b + 1, c(v0) > 2 + a + 2 and c(v2) > 2 + b + 2.
Since a, b 6 2, we have c(v1) < c(v0) and c(v1) < c(v2).

Case 6: n = 3, v0 6= vn and v0vn /∈ E(G). Then we remove v1, v2 from G and
add an edge v0v3. The resulting graph G′ we label by induction. Since v0

and v3 are neighbours in G′, their weights are different, hence the weight of
one of them must exceed four. Assume then c(v3) > 5. If w(v0v3) = 1, then
we remove the edge v0v3 and put w(v0v1) = w(v1) = w(v1v2) = w(v2v3) = 1,
w(v2) = 2. This way the weights of v0 and v3 remain unchanged, hence
c(v0) > 4 and c(v3) > 5, while c(v1) = 3 and c(v2) = 4. Therefore, we may
assume w(v0v3) = 2, w(v0) = a and w(v3) = b. Moreover, analogously as
above, we may assume c(v0) > 5 and c(v3) > 6 (since v0 and v3 are neighbours
in G′). Then we remove the edge v0v3, put w(v0v1) = a, w(v2v3) = b and
change the labels at v0 and v3 to twos. This way, the weights of v0 and
v3 remain as they were in G′. Then we put ones at v1 and on v1v2, and
obtain c(v1) = a + 1 + 1 6 4 < c(v0). Then we put d ∈ {1, 2} at v2, so
that its weight is different from the weight of v1. Consequently, we have
c(v2) = 1 + d + b 6 5 < c(v3), what finishes the proof.
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