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The Distinguishing Index
of the Cartesian Product

of Finite Graphs

Preprint Nr MD 078
(otrzymany dnia 28.06.2015)

Kraków
2015



Redaktorami serii preprintów Matematyka Dyskretna sa̧:
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Abstract

The distinguishing index D′(G) of a graph G is the least number d
such that G has an edge colouring with d colours that is only preserved
by the identity automorphism. In this paper we investigate the dis-
tinguishing index of the Cartesian product of connected finite graphs.
We prove that for every k ≥ 2, the k-th Cartesian power of a connected
graph G has the distinguishing index equal to two with the only excep-
tion D′(K2

2 ) = 3. We also prove that if G and H are connected graphs
that satisfy the relation 2 ≤ |G| ≤ |H| ≤ 2|G|(2‖G‖−1

)
−|G|+2, then

D′(G✷H) ≤ 2 unless G✷H = K2
2 .

Keywords: edge colouring; symmetry breaking; distinguishing index;
Cartesian product
Mathematics Subject Classifications: 05C15, 05E18

1 Introduction

We use the standard graph theory notation (cp. [6]). In particular, Aut(G)
denotes the automorphism group of a graph G.

An edge colouring breaks an automorphism ϕ ∈ Aut(G) if ϕ does not
preserve this colouring, i.e., there exists an edge of G that is mapped by ϕ

∗The research was partially supported by the Polish Ministry of Science and Higher
Education.
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to an edge coloured differently. The distinguishing index D′(G) of a graph
G is the least number d such that G has an edge colouring with d colours
that breaks all non-trivial automorphisms of G. Such a d-colouring is called
distinguishing. This notion was introduced by Kalinowski and Piĺsniak [9]
as an analogue of the well-known distinguishing number D(G) of a graph G
defined by Albertson and Collins [2] for vertex colourings. Obviously, the
distinguishing index is not defined for K2, thus from now on, we assume that
K2 is not a connected component of any graph being considered.

The distinguishing index of some examples of graphs was exhibited in [9].
For instance, D′(Pn) = D(Pn) = 2, n ≥ 3; D′(Cn) = D(Cn) = 2, n ≥ 6, and
D′(Cn) = 3, n = 3, 4, 5. There exist graphs G for which D′(G) < D(G), for
instance D′(Kn) = D′(Kp,p) = 2, for any n ≥ 6 and p ≥ 4 while D(Kn) = n
and D(Kp,p) = p + 1. It is also possible that D′(G) > D(G), and all trees
satisfying this inequality were characterized in [9]. A general upper bound
of the distinguishing index was proved in [9].

Theorem 1 [9] If G is a finite connected graph of order n ≥ 3, then D′(G) ≤
D(G) + 1. Moreover, if ∆ is the maximum degree of G, then D′(G) ≤ ∆
unless G is a C3, C4 or C5.

The distinguishing index was already investigated also for infinite graphs
[3] and their Cartesian product [4].

In this paper we aim to present some results for the distinguishing index
of the Cartesian powers and the Cartesian product of connected graphs.

The Cartesian product of graphs G and H is a graph denoted G✷H whose
vertex set is V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent if
either g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. We denote
G✷G by G2, and we recursively define the k-th Cartesian power of G as
Gk = G✷Gk−1.

A graph G is called prime if G = G1✷G2 implies that either G1 or G2 is
K1. It has been proved by Sabidussi and Vizing (cp. [6]) that every graph
has a prime factor decomposition with respect to the Cartesian product.
Moreover, for connected graphs this decomposition is unique up to the order
of isomorphic factors. Two graphs G and H are called relatively prime if K1

is the only common factor of G and H .
Let v be a vertex of H . A Gv-layer (called also a horizontal layer of

G✷H) is the subgraph induced by the vertex set {(u, v) : u ∈ V (G)}. An
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Hu-layer, called vertical, is defined analogously for a vertex u of G. Clearly,
each horizontal layer is isomorphic to G and each vertical one is isomorphic
to H . Therefore, speaking of a specified layer of G✷H , we shall usually use
only one coordinate of a vertex. The same refers to edges.

The automorphism group of the Cartesian product was characterized by
Imrich [7], and independently by Miller [11].

Theorem 2 [7], [11] Suppose ψ is an automorphism of a connected graph
G with prime factor decomposition G = G1✷G2✷ . . .✷Gr. Then there is a
permutation π of the set {1, 2, . . . , r} and there are isomorphisms ψi : Gπ(i) 7→
Gi, i = 1, . . . , r, such that

ψ(x1, x2, . . . , xr) = (ψ1(xπ(1)), ψ2(xπ(2)), . . . , ψr(xπ(r))).

It follows in particular that every automorphism of the Cartesian product
of two relatively prime graphs is a composition of a permutation of vertical
layers generated by an automorphism of G and a permutation of horizontal
layers generated by an automorphism of H . For more about the Cartesian
product, consult [6].

The distinguishing number of the Cartesian powers of graphs has been
thoroughly investigated. It was first proved by Albertson [1] that if G is a
connected prime graph, then D(Gk) = 2 whenever k ≥ 4, and if |V (G)| ≥ 5,
then also D(G3) = 2. Next, Klavžar and Zhu [10] showed that for any
connected graph G with a prime factor of order at least 3 the distinguishing
number D(Gk) = 2 for k ≥ 3. Both results were obtained using the Motion
Lemma [14]. Finally, Imrich and Klažar [8] solved the problem completely
by the following result, and their proof is not based on the Motion Lemma
but rather on the algebraic properties of the automorphism group of the
Cartesian product of graphs.

Theorem 3 [8] Let G be a connected graph and k ≥ 2. Then D(Gk) = 2
except for the graphs K2

2 , K
3
2 , K

2
3 whose distinguishing number is three.

In Section 3 we obtain an analogous result (Theorem 16) for the distin-
guishing index. Earlier, in Section 2 we prove some lemmas and propositions
used then in proofs of results in the next sections. Some of them are of
interest as such.

In the same paper [8], Imrich and Klažar obtained a sufficient condition
when the distinguishing number of the Cartesian product of two relatively
prime graphs equals two.
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Theorem 4 [8] Let G and H be connected, relatively prime graphs such that

|G| ≤ |H| ≤ 2|G| − |G| + 1.

Then D(G✷H) ≤ 2.

Recently, this result was extended by Estaji, Imrich, Kalinowski and
Piĺsniak in [5] for graphs which are not necessarily relatively prime.

Theorem 5 [5] Let G and H be connected graphs such that

|G| ≤ |H| ≤ 2|G| − |G| + 1.

Then D(G✷H) ≤ 2 unless G✷H ∈ {K2
2 , K

3
2 , K

2
3}.

In Section 4 we prove an analogous result (Theorem 19) for the distin-
guishing index of the Cartesian product of connected graphs. We also obtain
a slightly stronger result for trees (Theorem 17).

In proofs, we usually use colours 1, . . . , d. If d = 2, then we also use
colours 0 and 1, or alternatively red and blue.

2 Examples and lemmas

The Cartesian product Pm✷Pn of two paths of orders m and n, respec-
tively, has the distinguishing index equal to 2, unless m = n = 2 since then
D′(P2✷P2) = D′(C4) = 3. Indeed, it suffices to colour differently one edge of
the Pn-layer containing the vertex (u, v), where u and v are the end-vertices
of Pm and Pn, respectively.

For the Cartesian product of a cycle Cn with a path Pm we also have
D′(Pm✷Cn) = 2. It is easy to see that it suffices to colour two adjacent
edges, one in a Cn-layer and one in a Pm-layer, red and all other edges blue.

The Cartesian product of two cycles Cn and Cm also has the distinguishing
index equal to two. When m 6= n, the same colouring as in the case Pm✷Cn

breaks all non-trivial automorphisms. When m = n, we additionally colour
red a third edge such that these three red edges form a path of length three
(see Figure 1 for m = n = 3). It is worth noting that these results do not
depend on the relation between n and m.

The factors considered above have small distinguishing indices. Cycles
C3, C4, C5 have the distinguishing index equal to three and paths (except
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Figure 1: A distinguishing 2-colouring of C3✷C3

P2) as well as cycles Cn, for n ≥ 6, have the distinguishing index equal
to two. The problem becomes more complicated when we consider factors
with higher distinguishing index. An extremal example of a graph with the
largest distinguishing index compared to its size is a star K1,n with n ≥ 2
since D′(K1,n) = n = ‖K1,n‖. But first let us state the following result
concerning the Cartesian product H✷K2 called a prism of a graph H . We
shall make use of it in next parts of the paper.

Proposition 6 If H is a graph with D′(H) = d ≥ 2, then D′(H✷K2) ≤ d.
Moreover, if D′(H) = 2, then there holds the equality D′(H✷K2) = 2.

Proof. We colour the edges of one H-layer with a distinguishing d-colouring,
and all the edges of the other H-layer with the same colour, say 1. Next, we
colour all edges of K2-layers with colour 2. Thus all automorphisms of the
Cartesian product H✷K2 generated by the automorphisms of H are broken,
since one of the H-layers assumes a distinguishing colouring. Also, the two
H-layers cannot be interchanged as they have different numbers of edges
coloured with 1.

If H has a factor H ′ isomorphic to K2, then K2✷H has an automorphism
interchanging H ′ with K2. However, since all K2-layers have only colour 2
and there exists an H-layer with all edges coloured with 1, such an automor-
phism does not preserve the colouring.

The equality for d = 2 is obvious since the prism of every graph has
a non-trivial automorphism. �

It may happen that D′(H✷K2) < d when D′(H) = d ≥ 3. For instance,
we showed above that D′(Cm✷P2) = 2 while D′(Cm) = 3 for m = 3, 4, 5.

Proposition 7 If m ≥ 2 and n ≥ 2, then

D′(K1,n✷Pm) =
⌈

2m−1
√
n
⌉
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unlessm = 2 and n = r3 for some integer r. In the latter case D′(K1,n✷P2) =
3
√
n+ 1.

Proof. Let d be a positive integer such that (d−1)2m−1 < n ≤ d2m−1. Denote
by v the central vertex of the star K1,n, by v1, . . . , vn its pendant vertices,
and by u1, . . . , um consecutive vertices of Pm.

Suppose first that m ≥ 3. Clearly, every automorphism of K1,n✷Pm maps
the P v

m-layer onto itself. We colour the first edge of this layer with 1 and all
other edges of it with 2. Thus the P v

m-layer is fixed by every automorphism,
hence no K1,n-layers can be permuted.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

Figure 2: A distinguishing 2-colouring of K1,32✷P3

We want to show that the remaining edges of K1,n✷Pm can be coloured in
such a way that Pm-layers also cannot be interchanged. Then all non-trivial
automorphisms of K1,n✷Pm will be broken. Note that a colouring of all edges
yet uncoloured can be fully described by defining a matrix M with 2m − 1
rows and n columns such that in the j-th column the initial m− 1 elements
are colours of consecutive edges of the P

vj
m -layer, and the other m elements

are colours of the edges of K1,n-layers incident to consecutive vertices of
the P

vj
m -layer. It is easily seen that there exists a permutation of Pm-layers

preserving colours if and only if M contains at least two identical columns.
There are exactly d2m−1 sequences of length 2m− 1 with elements from the
set {1, . . . , d}, hence there exists a colouring with d colours such that every
column of M is distinct. Therefore, D′(K1,n✷Pm) ≤ d = ⌈ 2m−1

√
n⌉. On

other hand, n > (d− 1)2m−1 so for every edge (d− 1)-colouring of K1,n✷Pm,
the corresponding matrix has to contain two identical columns, therefore
D′(K1,n✷Pm) > d− 1. Figure 2 presents the case n = 32 and m = 3.

For m = 2, we colour the edges of K1,n✷P2 in the same way. The only
difference is that every P2-layer has only one edge, hence the two K1,n-layers
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need not be fixed. This is the case when n = d3, because then each element
of {1, . . . , d}3 is a column in M , and there exists a permutation of columns
of M which together with the transposition of rows of M defines a non-
trivial automorphism of K1,n✷P2 preserving the colouring. Thus we need an
additional colour for one edge in a K1,n-layer. When n < d3, we put the
sequence (1, 1, 2) as the first column of M , and we do not use the sequence
(1, 2, 1) any more, thus breaking the transposition of the K1,n-layers, and all
automorphisms of K1,n✷P2. �

Observe that the case n = 1 is covered by Proposition 6.

Proposition 8 If m ≥ 3 and n ≥ 2, then

D′(K1,n✷Cm) =
⌈

2m
√
n
⌉

unless m ≤ 5 and n = 22m. In the latter case D′(K1,n✷Cm) = 2m
√
n+ 1 = 3.

Proof. Let d be a positive integer such that (d − 1)2m < n ≤ d2m. Clearly,
the Cv

m-layer, where v is a central vertex of K1,n, is mapped onto itself by
every automorphism of K1,n✷Cm. The idea of the proof is the same as that
of Proposition 7 but here the matrix M of colours 1, . . . , d has 2m rows as
Cm has one more edge than Pm.

Assume first that m ≥ 6. We put a distinguishing 2-colouring of the
Cv

m-layer. Thus all permutations of K1,n-layers are broken. To break per-
mutations of Cm-layers, it suffices to ensure the columns of M are pairwise
distinct. This is clearly possible since n ≤ d2m. If we used less number of
colours, then M would have two equal columns because the number n of
columns is greater than (d − 1)2m. Hence, D′(K1,n✷Cm) = ⌈ 2m

√
n⌉ in this

case.
Now, let 3 ≤ m ≤ 5. If d ≥ 3, then we put a distinguishing 3-colouring

of the Cv
m-layer, and we argue as in the previous case. Then suppose that

2 ≤ n ≤ 22m. It is easy to check that for each m there exists an edge 2-
colouring c of the cycle Cm that is preserved by a unique ϕ0 ∈ Aut(Cm) \
{id}, and there exists another 2-colouring c′ such that there does not exist
a non-trivial automorphism of Cm that preserves both colourings. We put
the colouring c on the Cv

m-layer and the colouring c′ on another Cm-layer.
To the automorphism ϕ0 there naturally corresponds a permutation π0 of
rows of M . We complete a 2-colouring of edges of K1,n✷Cm such that the
corresponding matrix M has different columns. However, there might exist
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a unique permutation π1 of columns of M such that the composition π0 ◦ π1
does not change the matrix M , thus defining a non-trivial automorphism of
K1,n✷Cm. This is always the case when n = 22m. Then we certainly need a
third colour, and it suffices to put it on the Cv

m-layer to obtain a distinguishing
3-colouring. If n < 22m, we remove a suitable number of columns from M
including the column π1(c), i.e., an image of the column corresponding to
the colouring c. This way we obtain a matrix that (together with the edge
colouring of the Cv

m-layer) defines a distinguishing 2-colouring of K1,n✷Cm.
This completes the proof. �

The same idea of the proof is used for the following more general result
for d = 2.

Lemma 9 Let G be a connected graph with D′(G) = 2. If n ≤ 2|G|+‖G‖ and
the star K1,n is relatively prime to G, then

D′(K1,n✷G) = 2.

Proof. Since G and K1,n are relatively prime, the automorphism group of the
Cartesian product is generated only by automorphisms of the factors. Let u
be the central vertex of the starK1,n and let u1, . . . , un be its pendant vertices.
Clearly, the Gu-layer is mapped onto itself by every ϕ ∈ Aut(K1,n✷G. We
start with colouring the Gu-layer with a distinguishing 2-colouring. This
guarantees that all automorphisms generated by automorphisms of G are
broken.

For n = 1 we obtain the claim by Proposition 6. Let then n ≥ 2. Analo-
gously to the proofs of the previous propositions, to complete a 2-colouring of
D′(K1,n✷G) it suffices to define a binary matrix M with |G|+ ‖G‖ rows and
n columns, where the initial ‖G‖ elements in the j-th column are colours of
edges of the Guj -layer, and the other |G| elements are colours of the edges of
K1,n-layers incident to consecutive vertices of the Guj -layer. As n ≤ 2|G|+‖G‖,
we can choose a binary matrix M with distinct columns, thus breaking all
permutations of K1,n-layers. �

The distinguishing index of the Cartesian product of two stars can be
arbitrarily large if the sizes of factors differ sufficiently, as the following ob-
servation shows.

Proposition 10 If m ≥ 1 and n > d2m+1, then D′(K1,m✷K1,n) > d.
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Proof. If d = 1, then the conclusion trivially follows from the fact that
|Aut(K1,m✷K1,n)| ≥ m!n! > 1. If d ≥ 2, then m 6= n and the factors are
relatively prime. Let v be the central vertex of K1,n. Every d-colouring of
the edges of K1,m✷K1,n except the Kv

1,m-layer can be fully described by a
matrix M = [ai,j ] of n rows and 2m+1 columns, where for every i = 1, . . . , n
the entries ai,1, . . . , ai,m+1 are colours of edges in K1,n-layers incident to con-
secutive vertices of the i-th K1,m-layer, and ai,m+2, . . . , ai,2m+1 are colours
of consecutive edges of the i-th K1,m-layer. As the entries of M belong to
a d-element set and n > d2m+1, each such matrix has to have at least two
identical rows. Then a transposition of corresponding K1,m-layers is an au-
tomorphism of K1,m✷K1,n that preserves the colouring. �

We terminate this section with two lemmas which will be useful in the
next sections.

Lemma 11 Let G and H be connected, relatively prime graphs with D′(G) =
D′(H) = 2. Then D′(G✷H) = 2.

Proof. We colour one G-layer and one H-layer with distinguishing 2-
colourings. The remaining edges can be coloured arbitrarily. Such a colouring
breaks all permutations of both horizontal and vertical layers. Since G and
H are relatively prime, it follows from Theorem 2 that this colouring breaks
all automorphisms of G✷H . �

Lemma 12 Let G and H be two connected graphs such that G is prime,
|G| ≤ ‖H‖ + 1 and D′(H) = 2. Then D′(G✷H) = 2.

Proof. We first colour H-layers of the graph G✷H . There are at least two
H-layers, so we colour all edges of one layer blue, all edges of another one
with a distinguishing 2-colouring. If there are more H-layers, then we colour
them such that each of them has a different number of blue edges (counting
the H-layers coloured previously). It is possible since |G| ≤ ‖H‖ + 1. Next,
we colour all edges in every G-layer red.

All automorphisms of the Cartesian product generated by the automor-
phisms of H are broken, since one H-layer assumes a distinguishing colouring.
Also, no H-layers can be interchanged as every H-layer has different number
of blue edges.
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If H has a factor H ′ isomorphic to G, then G✷H has an automorphism
interchanging H ′ with G. However, since all G-layers have only red edges
and there exists an H-layer with only blue edges, such an automorphism does
not preserve this colouring. �

3 The Cartesian powers

Let us start with the Cartesian powers of K2. Recall that the k-dimensional
hypercube is isomorphic to Kk

2 and denoted by Qk. As mentioned earlier, the
distinguished index is not defined for K2 = Q1. Clearly, D′(Q2) = 3 since
Q2 = C4. The following result was proved in [13].

Theorem 13 [13] If G is a traceable graph of order at least even, then
D′(G) = 2.

Proposition 14 If k ≥ 3, then D′(Qk) = 2.

Proof. For k ≥ 3, a hypercube Qk is hamiltonian and has at least eight
vertices. Therefore, D′(Qk) = 2 by Theorem 13. �

The distinguishing index of the square of cycles and for arbitrary powers
of complete graphs with respect to the Cartesian, direct and strong products
has been already considered by Piĺsniak [12]. In particular, she proved that
D′(C2

m) = 2 for m ≥ 4, and D′(Kk
n) = 2 for any n ≥ 4 and k ≥ 2. Here we

consider the Cartesian powers of arbitrary connected graphs.

Lemma 15 If G is a connected prime graph with |G| ≥ 3, then D′(Gk) = 2
for every k ≥ 2.

Proof. The proof goes by induction on k. Let k = 2. There are n horizontal
and n vertical layers, where n = |G|.

Suppose first that G contains a cycle, i.e., ‖G‖ ≥ n. We colour horizontal
G-layers with two colours such that each of them has a different number of
blue edges between 0 and n − 1. The other edges are coloured such that
every vertical G-layer has a different number of blue edges between 1 to
n. As every horizontal G-layer has a different number of blue edges they
cannot be interchanged. The same is true for vertical G-layers. Therefore
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automorphisms of the Cartesian product generated by automorphisms of G
are broken. Our colouring also breaks interchanging the factors, since there
exists a completely red horizontal G-layer but no such vertical G-layer.

Assume now that G is a tree. Every tree has either a central vertex or a
central edge fixed by every automorphism. In case of a tree with a central
vertex v, we colour the edges of G2 such that consecutive horizontal layers
have 0, . . . , n−1 blue edges, and consecutive vertical layers have 0, . . . , n−1
blue edges in such a way that the horizontal Gv-layer and the vertical Gv-
layer have all edges coloured red and blue, respectively. The vertex (v, v) is
fixed by every automorphism of G2, hence this colouring is distinguishing.
If G has a central edge e0 = uv, we colour the edge (u, u)(v, u) red and
the remaining three edges of the subgraph e0✷e0 blue. The vertical and
horizontal Gv-layers have all edges blue and red, respectively. The remaining
edges of G2 are coloured as in the case of a tree with a central vertex. Such
colouring forbids exchange of the horizonal layers with the vertical layers.
Thus D′(G2) = 2.

For the induction step, we apply Lemma 12 by taking H = Gk−1 since
|G| ≤ ‖Gk−1‖ + 1. �

Let us now state the main theorem of this section that solves the problem
of the distinguishing index of the k-th Cartesian power of a connected graph.

Theorem 16 Let G be a connected graph and k ≥ 2. Then

D′(Gk) = 2

with the only exception: D′(K2
2) = 3.

Proof. Let G = Gp1
1 ✷Gp2

2 ✷ . . .✷Gpr
r , where pi ≥ 1, i = 1, . . . , r, be the prime

factor decomposition of G.
Assume first that Gi 6= K2, i = 1, 2, . . . , r. Then for every i we have

D′(Gkpi
i ) = 2 due to Lemma 15. By repetitive application of Lemma 11 we

get D′(Gk) = 2 since Gkpi
i and G

kpj
j are relatively prime if i 6= j.

Suppose now that G has a factor isomorphic to K2, say G1 = K2. If
p1 ≥ 2, then D′(Kkp1

2 ) = 2 and again D′(Gk) = 2 by Lemma 11 applied
to Kkp1

2 and Gp2
2 ✷ . . .✷Gpr

r . The same argument applies in case p1 = 1 and
k ≥ 3. Finally, if p1 = 1 and k = 2 we apply Lemma 12 twice and we also
get D′(Gk) = 2 unless r = 1, i.e., Gk = K2

2 . �
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4 The Cartesian product

In this section we investigate sufficient conditions on the sizes of factors of
the Cartesian product of two graphs to have the distinguishing index equal to
two. We begin with a result for trees. Observe first that, by Theorem 2, the
Cartesian product of two non-isomorphic asymmetric trees is an asymmetric
graph, so its distinguishing index is equal to 1.

Theorem 17 Let Tm and Tn be trees of size m and n, respectively. If

2 ≤ m ≤ n ≤ 22m+1 −
⌈m

2

⌉
+ 1,

then D′(Tm✷Tn) ≤ 2.

Proof. If Tm is isomorphic to Tn, then the conclusion follows from Lemma15.
Therefore, assume that Tm and Tn are non-isomorphic. Then they are rela-
tively prime, and it is enough to prove the existence of a 2-colouring of edges
of Tm✷Tn that breaks the automorphisms generated by automorphisms of
Tm and those generated by automorphisms of Tn.

In the proof we use the following well-known fact. In a rooted tree, if a
parent vertex is fixed by every automorphism preserving a given colouring
and its children cannot be permuted, then the children are also fixed.

Assume first that n = 22m+1 − ⌈m
2
⌉ + 1. We choose a root u0 of Tm as

follows. If Tm has a central vertex, then we take it as a root u0. If Tm has a
central edge, then we choose one of its end-vertices as u0 and the other one
as u1. Then we choose an enumeration u0, . . . , um of vertices of the rooted
tree Tm satisfying the following condition: if ui is a parent of uj, then i < j.
We enumerate the edge uiuj = ej. Thus E(Tm) = {e1, . . . , em}. Let v0 be a
root of Tn chosen by the same rule as the root u0 of Tm. Then we analogously
enumerate vertices and edges of Tn to obtain V (Tn) = {v0, . . . , vn}, E(Tn) =
{ε1, . . . , εn}.

We begin with colouring of the T v0
m -layer by putting colour 0 on the edges

ei, i = 1, . . . ,
⌈
m
2

⌉
, and colour 1 on the remaining edges of this layer. It is

easy to see that we can choose such an enumeration of vertices, and hence
of edges, that the root u0 is fixed by every automorphism of Tm preserving
this colouring. Indeed, this is obvious if u0 is a central vertex; if e1 = u0u1 is
a central edge of Tm, then we enumerate the vertices such that u1, . . . , u⌊m

2
⌋

belong to the same subtree of Tm − e1, therefore our colouring breaks all
automorphisms of Tm reversing the end-vertices of e1.
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Then, we similarly colour the T u0
n -layer with 0 and 1 in such a way that

the vertex (u0, v0) is fixed by every automorphism of Tm✷Tn preserving this
partial colouring. Hence, the T v0

m -layer, as well as the T u0
n -layer, is mapped

onto itself by every ϕ ∈ Aut(Tm✷Tn) preserving this colouring.
Next, we colour the other layers. Consider the set S of all 22m+1 binary

sequences of length 2m+ 1. Each T vi
m -layer with i ≥ 1 is assigned a distinct

sequence
si = (a0, a1, . . . , am, b1 . . . , bm)

from S, where aj, j = 0, . . . , m, is the colour of the edge εi joining the vertex
(uj, vi) with its parent in the T

uj
n -layer (observe that a0 has been already

defined for all i ≥ 1), and bj , j = 1, . . . , m is the colour of the edge of the T vi
m -

layer corresponding to ej. To break all permutations of Tn-layers we delete
some sequences from the set S. First observe that the sum of each coordinate
taken over all sequences in S is the same (and equal to 22m). Clearly, a T

uj
n -

layer and a T
uj′
n -layer cannot be permuted whenever j ≤ ⌈m

2
⌉ < j′ since the

edges ej and ej′ in the T v0
m -layer have different colours.

Consider the set A = {sk ∈ S : k = 1, . . . , ⌈m
2
⌉ − 1}, where sk =

(a0, a1, . . . , am, b1, . . . , bm) is a sequence such that

aj = a⌈m
2
⌉+j = 1, j = 1, . . . , k,

and all other elements of sk are equal to 0. Thus |S \A| = 22m+1 − ⌈m
2
⌉ + 1.

We use the set S \ A to colour T vi
m -layers, i = 1, . . . , 22m+1 − ⌈m

2
⌉ + 1, hence

the numbers of edges coloured with 1 is distinct for every pair of Tn-layers
that could be permuted. Thus, all edges in Tm✷Tn are coloured, and we
obtain a distinguishing 2-colouring of Tm✷Tn, when n = 22m+1 − ⌈m

2
⌉ + 1.

Now, assume that the difference l = 22m+1 − ⌈m
2
⌉ + 1 − n is positive. We

have to choose l sequences from S \A that will not be used in the colouring.
To do this denote 0 = 1, 1 = 0. A pair of sequences

(a0, a1, . . . , am, b1, . . . , bm), (a0, a1, . . . , am, b1, . . . , bm)

from S \ A is called complementary. When l is even, we choose l
2

comple-
mentary pairs. When l is odd, we choose the sequence (0, . . . , 0) ∈ S \A and
l−1
2

complementary pairs. It is easily seen that all permutations of layers in
Tm✷Tn are broken by this colouring. �
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The bound 22m+1−⌈m
2
⌉+1 for the size of a larger tree is perhaps not sharp.

However, it cannot be improved much since it follows from Proposition 10
that D′(K1,m✷K1,n) ≥ 3 whenever n > 22m+1.

We now consider the Cartesian product of connected graphs in general.
We first formulate a result for relatively prime factors.

Lemma 18 Let G and H be connected, relatively prime graphs such that

3 ≤ |G| ≤ |H| ≤ 2|G|(2‖G‖ − 1
)
− |G| + 2.

Then D′(G✷H) ≤ 2.

Proof. Denote V (G) = {u1, . . . , u|G|}, E(G) = {e1, . . . , e‖G‖}, V (H) =
{v1, . . . , v|H|}, E(H) = {ε1, . . . , ε‖H‖}. Assume that v1 is a root of a spanning
tree TH of the graph H , and the vertices of H are enumerated according
to the rooted tree TH , i.e., each child has the index greater than that of its
parent. As G and H are relatively prime, the only automorphisms of G✷H
are some permutations of G-layers and H-layers.

We first colour the edges of the Gv1-layer with a sequence

(b1, . . . , b‖G‖) = (1, . . . , 1).

We shall not use this sequence to colour the edges of any other G-layer any
more. Thus the Gv1-layer will be mapped onto itself by every automorphism
of G✷H preserving the colouring.

From now on, we proceed similarly as in the proof of Theorem 17. For
i = 2, . . . , n, the Gvi-layer will be assigned a distinct sequence of colours

(a1, . . . , a|G|, b1, . . . , b‖G‖),

where aj is a colour of the edge joining the vertex (uj, vi) to its parent in
the rooted tree TH in the Huj -layer, and bj is a colour of ej in the Gvi-
layer. We have 2|G|(2‖G‖ − 1

)
such sequences, as we excluded all sequences

of the form (a1, . . . , a|G|, 1, . . . , 1). Thus all permutations of G-layers are
broken. To break permutations of H-layers, we also exclude all sequences
sk = (a1, . . . , a|G|, b1, . . . , b‖G‖) with a1 = . . . = ak = 1 and ak+1 = . . . =
a|G| = b1 = . . . = b‖G‖ = 0, for every k = 1, . . . , |G| − 1. We have 2|G|(2‖G‖ −
1
)
− (|G| − 1) sequences to colour |H| − 1 G-layers. Depending on the size of

|H|, we also exclude a suitable number of complementary pairs of sequences

(a1, . . . , a|G|, b1, . . . , b‖G‖), (a1, . . . , a|G|, b1, . . . , b‖G‖)
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and, possibly, a sequence (0, . . . , 0). Thus we obtain a colouring of G✷H
with a set of sequences such that the number of 1’s is distinct in any of the
initial |G| coordinates. Therefore, no permutation of H-layers preserves this
colouring. Hence, this is a distinguishing 2-colouring of G✷H . �

Finally, we state the main result of this section.

Theorem 19 Let G and H be connected graphs such that

2 ≤ |G| ≤ |H| ≤ 2|G|(2‖G‖ − 1
)
− |G| + 2.

Then D′(G✷H) ≤ 2 unless G = H = K2.

Proof. If G = K2, then |H| ≤ 4. If H 6= K4, then either D′(H) = 2 or
H is a cycle or a star, and these cases were already settled in Section 2.
To construct a distinguishing 2-colouring of K2✷K4, colour one edge in one
K4-layer and two adjacent edges in the other K4-layer red, and all remaining
edges blue.

Let then |G| ≥ 3. The case when G and H are relatively prime was settled
in Lemma 18. Therefore, we focus here on the situation when G and H have
at least one common factor. Then D′(G✷H) ≥ 2 since the automorphism
group of G✷H is non-trivial. Let G = Gk1

1 ✷ . . .✷Gkt
t and H = H l1

1 ✷ . . .✷H
ls
s

be the prime factor decompositions of G and H , respectively. Assume that
the initial r factors are common, i.e., Gi = Hi for i = 1, . . . , r. Denote

GII = Gk1
1 ✷ . . .✷Gkr

r , HII = H l1
1 ✷ . . .✷H

lr
r .

Thus G = GI✷GII and H = HI✷HII . We use the following notation

n1 = |GI |, n2 = |GII |, m1 = |HI |, m2 = |HII |.

We first show that the distinguishing index of the Cartesian product

GII✷HII = Gli+k1
1 ✷ . . .✷Glr+kr

r

is equal to 2. If GII✷HII = K2
2 , then |HI | ≥ 2 and the graphs GI✷K

2
2

and HI satisfy the assumptions of Theorem 18, hence D′(G✷H) = 2, unless
|GI✷K

2
2 | > |HI |, that is |HI | < 4|GI |. In the latter case, we can also apply

Theorem 18 for the graphs GI and HI which are relatively prime and satisfy
the inequalities |GI | ≤ |HI | ≤ 2|GI |(2‖GI‖ − 1) − |GI | + 2 unless |GI | = 2
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and ≤ |HI | ≤ 7, i.e., G✷H = K3
2✷H

′
I , where H ′

I is prime, so we can apply
Proposition 14 and Lemma 12. In any case D′(G✷H) = 2.

If Gli+ki
i 6= K2

2 for every i = 1, . . . , r, then D′(Gl1+ki
i ) = 2 due to Theo-

rem 16, and hence D′(GII✷HII) = 2 by repeated application of Lemma 11.
If Gl1+k1

1 = K2
2 , then analogously D′(Gl2+k2

2 ✷ . . .✷Glr+kr
r ) = 2, hence

D′(GII✷HII) = 2 by applying Proposition 6 twice.

Consider now the graphs G′ = GI✷GII✷HII and H ′ = HI . Clearly, they
are relatively prime and

|H ′| < |H| ≤ 2|G|(2‖G‖ − 1
)
− |G| + 2 < 2|G′|(2‖G′‖ − 1

)
− |G′| + 2.

If also |G′| = n1n2m2 ≤ m1 = |H ′|, then graphs G′ and H ′ satisfy the
conditions of Lemma 18, and consequently, D′(G✷H) = D′(G′✷H ′) = 2.
Then suppose that n1n2m2 > m1. We consider two cases here.

Assume first that n1 ≤ n2m2, i.e., |GI | ≤ |GII✷HII |. Hence, |GI | ≤
‖GII✷HII‖+1, and by repeated application of Lemma 12 we get D′(G′) = 2.
As |H ′| < |G′|, we infer again from Lemma 12 thatD′(G✷H) = D′(G′✷H ′) =
2.

In the second case, i.e., when n2m2 < n1, suppose first that

m1 = |HI | ≤ 2|GI |(2‖GI‖ − 1
)
− |GI | + 2.

Then D′(GI✷HI) ≤ 2 since the assumptions of Lemma 18 is satisfied when-
ever |GI | ≤ |HI |. Recall that also D′(GII✷HII) = 2 and graphs GI✷HI and
GII✷HII are relatively prime. Hence D′(G✷H) = 2 by Lemma 11. Other-
wise, if m1 > 2|GI |

(
2‖GI‖ − 1

)
− |GI | + 2, then we arrive at the sequence of

inequalities

m1 < n1n2m2 ≤ n2
1 < 2n1(2n1−1)−n1 +2 ≤ 2|GI |(2‖GI‖−1

)
−|GI |+2 < m1,

which gives a contradiction.
Then suppose that |GI | = n1 > m1 = |HI | (and still n2m2 < n1). Let

G′′ = GI and H ′′ = GII✷HI✷HII . Clearly, |G′′| ≤ |H ′′| since |G| ≤ |H|.
Moreover, we have

|H ′′| = n2m2m1 < n1m1 < n2
1 < 2|G′′|(2‖G′′‖ − 1

)
− |G′′| + 2.

It follows from Lemma 18 that D′(G✷H) = D′(G′′✷H ′′) = 2. �
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