MATEMATYKA DYSKRETNA www.ii.uj.edu.pl/preMD/

Andrzej ŻAK

Cheapest $(K_q; k)$ -stable graphs

Preprint Nr MD 058 (otrzymany dnia 19.04.2012)

Kraków 2012 Redaktorami serii preprintów Matematyka Dyskretna są: Wit FORYŚ (Instytut Informatyki UJ) oraz Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)

Cheapest $(K_q; k)$ -stable graphs

Andrzej Żak*

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

April 19, 2012

Abstract

A graph G is called (H;k)-stable if G contains a subgraph isomorphic to H ever after removing any k elements each of which is either a vertex or an edge of G. Given a cost α of every vertex and a cost β of every edge of G we define the total cost c(G) of G to be $c(G) = \alpha |G| + \beta ||G||$. By $\operatorname{stab}_{(\alpha,\beta)}(H;k)$ we denote the minimum cost among the costs of all (H;k) stable graphs. In the paper, for all $\alpha,\beta \geq 0$, we present the exact value of $\operatorname{stab}_{(\alpha,\beta)}(K_q;k)$ for infinitely many k.

1 Introduction

By a word graph we mean a simple graph in which multiple edges (but not loops) are allowed. Given a graph G, V(G) denotes the vertex set of G and E(G) denotes the edge set of G. Furthermore, |G| := |V(G)| is the order of G and ||G|| := |E(G)| is the size of G.

Let H be any graph and k a non-negative integer. A graph G is called (H;k)-stable if G-S contains a subgraph isomorphic to H for every set $S \subset V \cup E$ with $|S| \leq k$. Given the cost $\alpha \geq 0$ of every vertex, and the cost $\beta \geq 0$ of every edge, the total cost c(G) of G is defined by $c(G) = \alpha |G| + \beta ||G||$. Then $\mathrm{stab}_{(\alpha,\beta)}(H;k) = \min\{c(G): G \text{ is } (H;k) \text{ stable}\}$ denotes the minimum cost among the costs of all (H;k)-vertex stable graphs.

Note that if $S \subset V$ and $\alpha = 0, \beta = 1$ then the above problem reduces to the problem of finding minimum (H;k)-vertex stable graphs, with the minimum cost (= minimum size) denoted by $\operatorname{stab}(H;k)$. This problem has been investigated in several papers including [1, 2, 3, 6]. In particular, the following result was obtained

Theorem 1 ([6]) If $q \ge 2$ and $k \ge (q-3)(q-2) - 1$, then

$$stab(K_q; k) = (2q - 3)(k + 1).$$

Moreover, if G is a $(K_q; k)$ -stable with ||G|| = (2q-3)(k+1) then G is a disjoint union of cliques K_{2q-3} and K_{2q-2} .

In this paper, for all $\alpha, \beta \geq 0$ and $q \geq 2$, we present the exact value of $\operatorname{stab}_{(\alpha,\beta)}(K_q;k)$ for infinitely many k. However, we prove only a special case $\alpha = \beta = 1$. For the proof of the whole result, we refer the reader to the full version of this article [7].

It is worth mentioning that a 'clear' edge version (i.e. with $S \subset E$ and $\alpha = 0, \beta = 1$) of this problem has also been considered, see [4, 5].

^{*}The author was partially supported by the Polish Ministry of Science and Higher Education.

2 Main result

We start with the following lemma.

Lemma 2 If G is (H;k)-stable with minimum cost, then

$$|G| - \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v) + 1} \ge k + 1.$$
 (1)

Moreover, if G is not a union of cliques then the inequality (1) is strong.

This lemma is completely analogous to Theorem 2 in [6]. For completness we repeat the proof from [7].

Proof of Lemma 2. Let σ be an ordering of the vertices of G. For $v \in V(G)$ let $\deg_{\sigma}^{-}(v)$ denote the number of neighbors of v that are on the left from v in ordering σ . Let S_{σ} denote the set of all vertices v with $\deg_{\sigma}^{-}(x) \leq \delta_{H} - 1$. Note that by removing from G all vertices from $V(G) \setminus S_{\sigma}$ we spoil all copies of H. Indeed, we can consecutively (from the right to the left) eliminate all vertices from S_{σ} because at each time the analyzed vertex has degree $\leq \delta_{H} - 1$ (and therefore is useless for H). Thus, since G is (H; k)-stable, $|G| - |S_{\sigma}| \geq k + 1$ for each ordering σ .

Therefore, it suffices to find an ordering σ with $|S_{\sigma}| \geq \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$. We assume that $\delta_H \geq 2$, because for $\delta_H = 1$ each set S_{σ} is an independent set and the undermentioned facts are well known. Given a random ordering σ , the probability that a vertex v has at most i neighbours on its left side in the ordering σ is equal

$$Pr(\deg_{\sigma}^{-}(v) \le i) = \frac{\binom{n}{d_{G}(v)+1}(i+1)(d_{G}(v))!(n-d_{G}(v)-1)!}{n!} = \frac{i+1}{d_{G}(v)+1}.$$

Thus,

$$Pr(v \in S_{\sigma}) = \frac{\delta_H}{d_G(v) + 1}.$$

Hence,

$$E(|S_{\sigma}|) = \sum_{v \in V(G)} \frac{\delta_H}{d_G(v) + 1}.$$

Thus, there exists an ordering σ with the required number of vertices in S_{σ} . Furthermore, the equality in (1) may hold only if $|S_{\sigma}|$ is the same for every ordering σ (if there is a σ with $|S_{\sigma}| < \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$, then there is also a σ' with $|S_{\sigma'}| > \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$ because the expectation is exactly that number). Now we will prove that if G is minimum (H; k)-stable, then this is possible only for the disjoint union of cliques.

Let C be any component of G and let $v \in V(C)$. Note that since G is a (H; k)-stable with minimum cost, every vertex (as well as every edge) of G is contained in some copy of H. Thus, the minimum degree of G is at least δ_H . Let $\delta = \delta_H$. Let v be an arbitrary vertex of G. Consider the following ordering σ of vertices of C:

$$v_1, v_2, ..., v_{\delta}, v_{\delta+1}, v_{\delta+2}, ..., v_{|C|},$$

where $v_{\delta+1}=v$ and $v_1,v_2,...,v_{\delta}$ are any neighbours of v. Next consider an ordering σ'

$$v_{\delta+1}, v_1, v_2, ..., v_{\delta}, v_{\delta+2}, ..., v_{|C|}$$
.

Note that since $|S_{\sigma}| = |S_{\sigma'}|$ and $v_{\delta+1} \in S_{\sigma'}$, $v_{\delta} \notin S_{\sigma'}$. Thus, $\deg_{\sigma'}(v_{\delta}) = \delta$. Analogously we obtain that $\deg_{\sigma''}(v_{\delta-1}) = \delta$ in an ordering $\sigma'' : v_{\delta}, v_{\delta+1}, v_1, v_2, ..., v_{\delta-1}, v_{\delta+2}, ..., v_{|C|}$, and so on. Therefore, vertices $v_1, v_2, ..., v_{\delta}, v_{\delta+1}$ induce a clique. Since v and its neighbours have been chosen arbitrarily, $\{v\} \cup N_G(v)$ induce a clique for each $v \in V(C)$. This implies that C is a clique. \Box

Theorem 3 If $q \ge 2$ and $k \ge (q-1)(q-2)-1$, then

$$\operatorname{stab}_{(1,1)}(K_q;k) = (2q-1)(k+1). \tag{2}$$

Moreover, if G is a $(K_q; k)$ -stable with c(G) = (2q-1)(k+1) then G is a disjoint union of cliques K_{2q-2} and K_{2q-1} .

Proof. Let G be a $(K_q; k)$ -stable graph with minimum possible cost. By Lemma 2 we have that

$$|G| \ge (q-1) \sum_{v \in V(G)} \frac{1}{d_G(v) + 1} + k + 1 \ge |G| \frac{q-1}{d_G+1} + k + 1$$
, and so $|G| \ge (k+1) \frac{d_G+1}{d_G-q+2}$,

where $d_G = \frac{2||G||}{|G|}$ is the average degree of G. Thus,

$$c(G) = |G| + ||G|| = |G| + \frac{d_G}{2}|G| \ge \left(1 + \frac{d_G}{2}\right)(k+1)\frac{d_G + 1}{d_G - q + 2}.$$

By examining the derivative of the function $f(x) = (1 + \frac{x}{2})(k+1)\frac{x+1}{x-q+2}$ we obtain that f is decreasing for $x \le x_0$ and increasing for $x \ge x_0$ where $x_0 = q - 2 + \sqrt{(q-1)q}$. Note that

$$2q - 3 < x_0 < 2q - 2. (3)$$

Therefore, the lower bound (2) can be achieved only if $d_G \in [2q-3,2q-2]$. Indeed, otherwise c(G) > (2q-1)(k+1), since f(2q-3) = f(2q-2) = (k+1)(2q-1). Then the sum $\sum_{v \in V(G)} \frac{1}{d_G(v)+1}$ is minimal if degrees of vertices of G differ as small as possible from d_G . Thus, we may assume that $d_G(v) \in \{2q-3,2q-2\}$ for every $v \in V(G)$. Let m denote the number of vertices of G with degree equal to 2q-3. Hence,

$$\sum_{v \in V(G)} \frac{1}{d_G(v) + 1} \ge m \frac{1}{2q - 2} + (|G| - m) \frac{1}{2q - 1},\tag{4}$$

with equality if and only if $d_G(v) \in \{2q-3, 2q-2\}$ for every $v \in V(G)$. Therefore, by Lemma 2 we have

$$|G| - m \frac{q-1}{2q-2} - (|G| - m) \frac{q-1}{2q-1} \ge k+1$$
, and so $|G| \ge (k+1) \frac{2q-1}{q} + \frac{m}{2q}$, (5)

and if equality holds, then G is a disjoint union of cliques.

Thus,

$$c(G) = |G| + |G| + \frac{1}{2}(m(2q - 3) + (|G| - m)(2q - 2))$$

$$= |G|q - m/2 \ge (2q - 1)(k + 1) + m/2 - m/2$$

$$= (2q - 1)(k + 1),$$
(6)

by formula (5). Moreover, if equality holds, then G is the disjoint union of cliques K_{2q-2} and K_{2q-1} .

Now we will show that the equality in formula (6) is indeed attained for disjoint union of cliques K_{2q-2} and K_{2q-1} . Note that $aK_{2q-1} + bK_{2q-2}$ is $(K_q; aq + b(q-1) - 1)$ -stable. Hence, for k = aq + b(q-1) - 1,

$$c(aK_{2q-1} + bK_{2q-2}) = a(2q-1) + a\frac{(2q-1)(2q-2)}{2} + b(2q-2) + b\frac{(2q-2)(2q-3)}{2}$$
$$= (2q-1)(aq+b(q-1)) = (2q-1)(k+1)$$

as required.

On the other hand (q-1)(q-2)-1 is the Frobenious number for $\{q,q-1\}$, namely the largest integer that canot be presented in the form aq+b(q-1). Thus, if $k \geq (q-1)(q-2)-1$, then $G = aK_{2q-1} + bK_{2q-2}$ is $(K_q; k)$ -stable with minimum cost.

For arbitrary α, β we have

Theorem 4 ([7]) Let $\alpha \geq 0$, $\beta > 0$ be real numbers and $k \geq 0$, $q \geq 2$ be integers. Let $r = \left| \sqrt{(q-1)(q-2+\frac{2\alpha}{\beta})} \right| - q$.

1. If
$$\alpha(q-1) > \beta(2q+qr+(r^2+r-2)/2)$$
, then

$$\operatorname{stab}_{(\alpha,\beta)}(K_q;k) \ge (k+1)\frac{2q+r}{q+1+r}\left(\alpha+\beta\left(q+\frac{r-1}{2}\right)\right),$$

with equality if and only if k = a(q+1+r) - 1 for some positive integer a. Moreover, if G is (H;k)-stable with minimum cost then G is a disjoint union of cliques K_{2q+r} .

2. If
$$\alpha(q-1) = \beta(2q+qr+(r^2+r-2)/2)$$
, then

$$\operatorname{stab}_{(\alpha,\beta)}(K_q;k) \ge (k+1)\frac{2q+r}{q+1+r}\left(\alpha+\beta\left(q+\frac{r-1}{2}\right)\right),$$

with equality if and only if k = a(q + 1 + r) + b(q + r) - 1 for some positive integers a, b. Moreover, if G is (H; k)-stable with minimum cost then G is a disjoint union of cliques K_{2q+r} and K_{2q-1+r} .

3. If
$$\alpha(q-1) < \beta(2q+qr+(r^2+r-2)/2)$$
, then

$$\operatorname{stab}_{(\alpha,\beta)}(K_q;k) \ge (k+1)\frac{2q-1+r}{q+r}\left(\alpha+\beta\left(q+\frac{r-2}{2}\right)\right),$$

with equality if and only if k = a(q+r) - 1 for some positive integer a. Moreover, if G is (H;k)-stable with minimum cost then G is a disjoint union of cliques K_{2q-1+r} .

References

- [1] S. Cichacz, A. Görlich, M. Zwonek and A. Żak, On $(C_n; k)$ stable graphs, Electron. J. Combin. 18(1) (2011) #P205.
- [2] A. Dudek, A. Szymański, M. Zwonek, (H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1) (2008) 137–149.

- [3] J-L. Fouquet, H. Thuillier, J-M. Vanherpe and A.P. Wojda, On (Kq; k) vertex stable graphs with minimum size, Discrete Math. (2011) article in press doi:10.1016/j.disc.2011.04.017.
- [4] P. Frankl and G.Y. Katona, Extremal k-edge Hamiltonian hypergraphs, Discrete Math. 308 (2008) 1415-1424.
- [5] I. Horváth, G.Y. Katona, Extremal P_4 -stable graphs, Discrete Appl. Math. (2011) (in press), Corrected Proof. doi:10.1016/j.dam.2010.11.016.
- [6] A. Żak, On $(K_q; k)$ stable graphs, submitted.
- [7] A. Żak, Cheapest (H; k)-stable graphs, submitted.