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Abstract

The least k such that a given digraph D = (V, A) can be arc-labeled with
integers in the interval [1,%] so that the sum of values in-coming to x is
distinct from the sum of values out-going from y for every arc (z,y) € A,
is denoted by x%(D). This corresponds to one of possible directed versions
of the well-known 1-2-3 Conjecture. Unlike in the case of other possibilities,
we show that x5 (D) is unbounded in the family of digraphs for which this
parameter is well defined. However, if the family is restricted by excluding
the digraphs with so-called lonely arcs, we prove that y5(D) < 4, and we
conjecture that Y% (D) < 3 should hold.
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1. Introduction

The origins of the problem go back to the eighties of the twentieth century
and are associated with attempts to define the notion of irregularity of a
graph using labels (colors) on the edges of a graph. Among those attempts,
it was the irregularity strength that attracted the greatest attention. Perhaps
this was due to a simple “geometric” interpretation based on the fact that
although each graph of order greater than one contains at least two vertices
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of the same degree, an analogous statement is not true for multigraphs, ¢.e.,
graphs in which we allow more than one edge between two (distinct) vertices.

Let G = (V, E) be a graph. Given an integer k, a k-edge-coloring (la-
beling) of G is a function f : E — {1,2,...,k}. For x € V, we put
o(x) = .., f(e). We say that two vertices x,y are sum-distinguished (the
coloring f is sum-distinguishing) if o(x) # o(y). The irreqularity strength
of G is the minimum £ such that there exists a k-edge-coloring f sum-
distinguishing all vertices in the graph GG. The coloring f can be represented
by substituting each edge e by a multiedge with multiplicity f(e). The sum
o(x) of labels around a vertex x is then equal to the degree of = in the
respective multigraph.

A k-edge-coloring f of G is called neighbor-sum-distinguishing if o(x) #
o(y) whenever zy is an edge of G (we refer to it as to an nsd-coloring for
short). Such a local variant of the irregularity strength gained great popu-
larity in the twenty first century due to the following beautiful conjecture of
Karonski, Luczak, and Thomason [5], commonly called the 1-2-3 Conjec-
ture nowadays.

Conjecture 1. If G = (V, E) is a graph without isolated edges, then there is
an nsd-coloring f : E—{1,2,3} of G.

Following the notation from the survey paper by Seamone [7] we will de-
note the least k so that there is an nsd-k-edge-coloring of a graph G by x5 (G).
The 1-2-3 Conjecture thus presumes that x5 (G) < 3 for every graph G with-
out isolated edges. The best currently known general upper bound stating
that x%(G) < 5 is due to Kalkowski, Karonski and Pfender [4]. The conjec-
ture is verified for particular graph classes, e.g., bipartite graphs, see [5].

Theorem 2. If G is a bipartite graph without isolated edges, then x5(G) < 3.
|

We will focus on nsd-colorings of digraphs D = (V, A), where we will use
a simplified notation zy for an arc (x,y). Given a k-arc-coloring f : A —
{1,2,...,k} and a vertex z € V, we discern out-going arcs xy € A and
in-coming arcs yx € A, and analogously the out-sum o™ (x) =3, f(zy)
and the in-sum o~ (z) = >_ ., f(yz) of x. Several variants of nsd-colorings
of digraphs have already been considered.

The first problem of this type was introduced by Borowiecki, Grytczuk,
and Pil$niak, and concerned so-called relative sums, defined for a vertex z as



o+(x) = ot (x)—0o~ (x). The least k so that a k-arc-coloring of a given digraph
D = (V, A) exists with o.(x) # o+(y) for every arc xy € A is denoted by
X%(D). The authors proved in [3| the sharp upper bound x4 (D) < 2 valid
for every digraph D.

Only just then Baudon, Bensmail, and Sopena considered the least integer
k admitting a k-arc-coloring of a digraph D = (V, A) such that 0" (x) # o™ (y)
for every zy € A. We denote such k by x.(D). In [2] the authors showed
that x5 (D) < 3 for every digraph D and proved that given a digraph D,
the problem of determining whether x% (D) < 2 is NP-complete. (Note that
obviously we obtain the same thesis for the twin graph invariant x° (D) of
the above one, where we require: o~ (x) # o~ (y) for every zy € A.)

The third natural variant was suggested by Fuczak [6], who proposed
to study the sum-distinguishing requirement o*(z) # o~ (y) for zy € A.
Barme et al. [1] observed that the corresponding parameter x5 (D) is not
defined provided that D has an arc zy satisfying d*(z) = 1 = d (y), called a
lonely arc. Nevertheless, they were able to prove the following upper bound.

Theorem 3. If D is a digraph without lonely arcs, then x5 (D) < 3. [ |

The proof of Theorem 3 is based on the equivalence between the inequality
X5(D) < k and the existence of an nsd-k-edge-coloring of a special (undi-
rected) bipartite graph associated with D. Thus by the classification from
the paper of Thomassen, Wu and Zhang [8], one may moreover determine
X% (D) for any digraph D (without lonely arcs) in a polynomial time now.

In this note we study the inverse (in a way) of the problem of Luczak
above, requiring that o~ (z) # o7 (y) for xy € A (which seems to be the last
natural open issue in this new field). In the next section we discuss when the
corresponding graph invariant x5 (D) is well defined, and, surprisingly, we
prove that for those digraphs \ (D) may be arbitrarily large. On the other
hand, in Section 3 we show that x5(D) < 4 if lonely arcs are additionally
forbidden. Finally, in the last section we pose a conjecture that then x4 (D) <
3 should hold, and present a few rich families of digraphs supporting this new
1-2-3-Conjecture for digraphs.

2. Boundlessness of the inverse Luczak’s problem

We call a digraph D = (V, A) tractable if for a suitable k there is a k-arc-
coloring f of D such that for any arc zy € A, 0~ (z) # o7 (y). The least such
k for a tractable digraph D is denoted by x5 (D).
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There are two obvious obstacles for tractability. Consider a k-arc-coloring
[ of a digraph D = (V, A). For a vertex = € V, we denote by A~ (z) (A" (x))
the set of arcs in D in-coming to x (out-going from z, respectively). An
arc xy € A is called a source-sink arc, an s-s arc for short, if x is a source
and y is a sink of D (i.e., d (x) = 0 and d*(y) = 0). Then, inevitably,
o0~ (z) =0 =07 (y). The situation is similar if both arcs 2y and ya belong to
A and zy is an s-s arc in the digraph D" = D —yz. We then say that {zy, yz}
is a source-sink edge (an s-s edge for short). Then A~ (z) = At (y) = {yx},
and hence o~ (z) = f(yx) = ot (y). It is straightforward to see that if we
forbid these two configurations in D, then A~ (z) # AT (y) for every arc
zy € A, and thus there exists a k-arc-coloring of D with o~ (z) # o (y) for
every xy € A for sufficiently large k.

Proposition 4. A digraph D is tractable if and only if D has neither s-s
arcs nor s-s edges. [ |

The three parameters x4, x¢ and x fulfill a correspondingly formulated
1-2-3-Conjecture. Is it the case for the parameter y%, too? The digraph D,
drawn in Figure 1, gives us a negative answer to this question.

First, observe that D, has neither an s-s arc nor an s-s edge. Consider
an arc-coloring f of Dy such that o~ (x)#0c™ (y) whenever xy is an arc of Dj.
Let f(xi1x2) = a, f(xszy) = b, f(xsz6) = ¢, f(x728) = d. The digraph Dy
satisfies At (29;-1) = {woi_129;} = A (22), i = 1,2,3,4. Moreover, for any
i,7 with 1<4¢ < <4, the arc xy;x9;_1 belongs to Dy, and hence

f(@oim120;) = 0 (02:) 70 (w95-1) = f(22j-1225).
Therefore, the colors a, b, c,d of the dashed arcs wo; 1x9;, ¢ = 1,2,3,4, are
pairwise distinct, and so x%(D4) > 4.

Proposition 5. For any integer k > 2 there is a digraph Dy, with X5 (Dy) >
k.

Proof. Consider a digraph D), with the vertex set {z1,xs,..., 29} and the
arc set Ule ({xzi_lm%} U U?ziﬂ{xzixgj_l}). Suppose that an [-arc-coloring
f:E(Dy) — {1,2,...,1} satisfies 0~ (z;) # o7 (z;) whenever z;z; € E(Dy,).
It is easy to see proceeding as above that then necessarily [ > k. |

Corollary 6. The parameter X5 is not bounded from above by an absolute
constant. ]



Figure 1: A digraph D4 where the color 4 is needed

3. Graphs without lonely arcs

Let us observe that in the digraph D, from Proposition 5, the arcs
Zo;_1%2;, which necessitate the use of a large number of colors, are lonely
arcs. Having this in mind, it seems natural to ask whether, if a digraph does
not contain such arcs, it is possible to color its arcs in the desired way using
only colors 1, 2, 3. The question remains as yet unanswered. However, we
are able to show that positive integers up to four are enough in this case.
Note that forbidding lonely arcs in a digraph D forbids s-s edges in D, too,
and so guarantees the tractability of D.

Theorem 7. If D is a digraph without s-s arcs and without lonely arcs, then
X3 (D) < 4.

To prove Theorem 7 we adapt the concept of so-called associated bi-
partite graphs used in [1]. Let D = (V, A) be a digraph of order n with
V = {v1,v9,...,v,}. The associated bipartite graph of D is the undirected
bipartite graph B(D) = (X,Y, E) of order 2n with X = {zy,z2,...,2,},
Y ={y1,92,...,yn}, and the edge set defined as follows: x;y; € E < vv; €
A, 1 <i,j <n (note that here z;y; is a shortened form for {z;,y;}).

There is a one-to-one correspondence between the arcs of D and the edges
of B(D). It is easy to see that the arcs out-going from v; correspond to the
edges incident with z;, and the arcs in-coming to v; correspond to the edges
incident with y;. In particular, the arc vv; is lonely (in D) if and only
if the edge wx;y; is isolated (in B(D)). Let us observe that, in an obvious



way, an arc-coloring of D induces an edge-coloring of B(D), and vice versa.
Moreover, for the arc-coloring of D and the edge-coloring of B(D) inducing
each other, we have o™ (v;) = o(z;) and o~ (v;) = o(y;).

In the following lemma we use the group Z, = {0, 1,2, 3}, where § € Z4
is the set of integers congruent to ¢ modulo 4, ¢+ = 0, 1,2, 3.

Lemma 8. Let G = (X, Y, E) be a bipartite graph without isolated vertices
and edges. Then there exists a mapping [ : E — 74 such that the mapping
0 : XUY — Zy, defined by o(u) = _,.cp f(w), satisfies o(x) € {2,3} for
each v € X and o(y) € {0,1} for eachy €Y.

Proof. We define a required edge coloring of G componentwise. For that
purpose let k& be the number of components of G, and let G, = (X, Y}, E)),
[ € {1,2,...,k}, be the ith component of G, where X; C X and V; C Y
notice that |E;| > 2. Suppose that X; = {x¢, x1,...,2,}, with d = d(zo) >
d(x;) for i =1,2,...,p, and let y1, ya, ..., yq be the neighbors of z.

If d > 2, we determine values of f for edges belonging to Ej in several
stages. In the stage 0 we put on each edge in E; the temporary value 0.

In the stage j € {1,2,...,p} we choose an arbitrary path P in G; joining
xo with x;, and we add to temporary values of the edges of P alternately 1
and 3. Since 1+ 3 = 0, and 0 is the identity element in Z4, temporary sum
values do not change for inner vertices of P, hence after finishing the stage j
we have temporary sum values o(x¢) = j1, o(z;) =3 fori =1,2,..., 7, and
o(u) = 0 for all remaining vertices u € X; UY].

Consider the situation after finishing the stage p, when o(x¢) = pl = q
with p = ¢ (mod 4) and ¢ € {0,1,2,3}. If ¢ € {2, 3}, we are done.

If ¢ € {0,1}, in the stage p + 1 we add 1 to the temporary value of the
edge xoy; for each 7 satisfying 1 < ¢ < 2 — ¢ to finish with o(y;) = 1 and
O'(.CE(]) = 2.

In the case d = 1 we have G; = K,y with p > 1, and B} = {z;y, : ¢ =
0,1,...,p}. Colors of f for the edges in E; are then defined as follows (and
it is straightforward to check that the mapping o, derived from f, has the
required property for all vertices in X; UY)):

If p is odd, then f(z;y1) =2 fori=0,1,...,p.

If p=2, then f(zoy1) = f(z111) = f(721n) = 3.

If pis even, p > 4, then f(zoy1) = f(z1y1) = f(22y1) = B and f(z;y1) = 2
fori=3,4,...,p.

This completes the proof of the lemma. |



Proof of Theorem 7 Let B be the associated bipartite graph for the digraph
D = (V,A), and let G = (X,Y, E) be created from B by excluding all its
isolated vertices. The absence of lonely arcs in D causes the absence of
isolated edges in G. Therefore, by Lemma 9, there is a coloring f : £ — 74
such that o(x) € {2,3} for each € X and o(y) € {0,1} for each y € Y.

Consider the mapping f : A — {1,2,3,4} defined so that if z;y; € E
(with z; € X and y; € V), then f(vv;) € f(iy;); this is well-defined since
the congruence class f(z;y;) € {0,1,2,3} has a unique representative in the
set {1,2,3,4}. Let 6~ be the in-sum function and ¢* the out-sum function
that correspond to f . To show that f distinguishes vertices v;, v; € V' with
v;v; € A we first note that d~(v;) + d*(v;) > 0 (otherwise v;v; would be an
s-s arc in D), and then we reason as follows:

If d(v;) = 0, then d*(v;) > 0, and so ¢~ (v;) =0 < 5 (v;).

If d*(vj) =0, then d~(v;) > 0, hence 6~ (v;) > 0= (v;).

If d=(v;) > 0 and d*(v;) > 0, from the definition of the mapping f it
is clear that 6~ (v;) € o(y;) € {0,1} and 6% (v;) € o(z;) € {2,3}, which
immediately yields 6~ (v;) # 61 (v;). [ |

4. The conjecture

Note that in the proof of Theorem 8 we have distinguished adjacent ver-
tices of a digraph D in a stronger way than necessary. Indeed, if v;v; is an
arc of D, then the in-sum for v; is not only distinct from the out-sum for v;,
but those sums even belong to distinct congruence classes modulo 4. This is
why we believe that the following conjecture holds true.

Conjecture 9. If D is a digraph without s-s arcs and lonely arcs, then
X3 (D) < 3.

A symmetric digraph D = (V, A) is such that zy € A = yr € A. If
a k-arc-coloring f : A — {1,2,...,k} of a symmetric digraph D satisfies
ry € A = of(x) # o~ (y), then it satisfies yr € A = o~ (y) # o' (x),
too, and wvice versa. As a symmetric digraph cannot contain s-s arcs, by
Theorem 3 we obtain the following proposition supporting Conjecture 9.

Proposition 10. If D is a symmetric digraph without lonely arcs, then
Xg(D) = xg(D) < 3. =

Moreover, a connected symmetric digraph D whose underlying graph is
a cycle of an odd length 21 + 1, satisfies x5(D) = x%(D) = x%(B(D)) =
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X%(Cyq2) = 3. Thus the upper bound in Conjecture 9 cannot be reduced.
In order to further support the plausibility of its thesis we additionally prove
it for a special class of digraphs. We say a component C' of a bipartite graph
(X,Y, E)is an X -star if C'is a star with [V (C') N X| = 1; similarly is defined
a Y-star.

Theorem 11. Let D be a digraph without s-s arcs and lonely arcs and let
B(D) = (X,Y,E). If B(D) has no X-star components or B(D) has no
Y -star components, then x5 (D) < 3.

Proof. Suppose first that B(D) has no X-star components and let G =
(X', Y’ E) be the graph created by excluding all isolated vertices from B(D).
Proceeding analogously as in the proof of Lemma 8 we prove that there is a
mapping f : E — Z3 = {0,1,2} such that o(z) € {1,2} for each x € X’ and
o(y) = 0 for each y € Y’ (in this case § € Z3 is the set of integers congruent
to ¢ modulo 3, i =0, 1, 2).

Let k£ be the number of components of G and let G; = (X, Y}, Ey), | €
{1,2,...,k}, be the lth component of G, where X; C X" and ¥; C Y. From
our assumptions it follows that the set X = {z,xo,...,x,} satisfies p > 2;
let ¢ = [5].

In the stage 0 we assign 0 as the temporary value of f to each edge of Ej.

In the stage j € {1,2,...,q} we choose an arbitrary path P in G; joining
T9j—1 to 25, and we add to temporary values of the edges of P alternately
1 and 2. If p is even, we are done. If p is odd, in the stage ¢ + 1 we proceed
similarly as above with a path in G joining z; to x,,.

The mapping f is then used to define the mapping f : A — {1,2,3}
similarly as in the proof of Theorem 7. Since f distinguishes adjacent vertices
of D in the required way, we have y4 (D) < 3.

If B(D) has no Y-star components, we proceed the same way as above,
this time however assuring that o(y) € {1,2} for each y € Y’ and o(x) =0
for each z € X'. [ |

Corollary 12. If T is an n-vertex tournament, n > 3, then x5(T) < 3.

Proof. Let V(T) = {vy,va,...,v,}. By the way of contradiction we prove
that B(T') has no X-stars. Indeed, otherwise we may suppose without loss
of generality that an X-star C' of B(T) satisfies V(C) N X = {z;} and
E(C) 2 {x1y2,x1y3}. Since d(y2) = 1 = d~(v2), 1109 € E(T) and T is a
tournament, we have d*(vy) = n — 2 = d(xs), vov; ¢ E(T), vevs € E(T),



oy € E(B(T)) and d(ys3) > 2, a contradiction. Thus, by Theorem 11,
%5 (T) < 3. .

Another wide family of examples may also be derived from the result
of Thomassen, Wu, and Zhang (8], who succeeded to determine x%(G) for
any bipartite graph GG without isolated edges, and in particular proved that
X5(G) = 2 if §(G) > 3. Consequently, any digraph D with x5(D) = 3
supports Conjecture 9, too. Indeed, if x5 (D) = 3 = x&(B(D)), then by [§]
it follows that §(B(D)) = 2, i.e. B(D) = (X,Y, E) has neither X-star nor
Y-star components, and hence, by Theorem 11, y5(D) < 3.
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