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Mariusz WOŹNIAK (Katedra Matematyki Dyskretnej AGH)



A noteon a dire
ted version of the 1-2-3 Conje
tureMirko Hor¬áka, Jakub Przybyªob,∗, Mariusz Wo¹niakbaInstitute of Mathemati
s, P.J. �afárik University, Jesenná 5, 040 01 Ko²i
e, SlovakiabAGH University of S
ien
e and Te
hnology, al. A. Mi
kiewi
za 30, 30�059 Krakow,PolandAbstra
tThe least k su
h that a given digraph D = (V,A) 
an be ar
-labeled withintegers in the interval [1, k] so that the sum of values in-
oming to x isdistin
t from the sum of values out-going from y for every ar
 (x, y) ∈ A,is denoted by χ̄e�(D). This 
orresponds to one of possible dire
ted versionsof the well-known 1-2-3 Conje
ture. Unlike in the 
ase of other possibilities,we show that χ̄e�(D) is unbounded in the family of digraphs for whi
h thisparameter is well de�ned. However, if the family is restri
ted by ex
ludingthe digraphs with so-
alled lonely ar
s, we prove that χ̄e�(D) ≤ 4, and we
onje
ture that χ̄e�(D) ≤ 3 should hold.Keywords: edge 
oloring, digraph, 1-2-3 Conje
ture2000 MSC: 05C15, 05C201. Introdu
tionThe origins of the problem go ba
k to the eighties of the twentieth 
enturyand are asso
iated with attempts to de�ne the notion of irregularity of agraph using labels (
olors) on the edges of a graph. Among those attempts,it was the irregularity strength that attra
ted the greatest attention. Perhapsthis was due to a simple �geometri
� interpretation based on the fa
t thatalthough ea
h graph of order greater than one 
ontains at least two verti
es
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s August 30, 2017



of the same degree, an analogous statement is not true for multigraphs, i.e.,graphs in whi
h we allow more than one edge between two (distin
t) verti
es.Let G = (V,E) be a graph. Given an integer k, a k-edge-
oloring (la-beling) of G is a fun
tion f : E → {1, 2, . . . , k}. For x ∈ V , we put
σ(x) =

∑

e∋x f(e). We say that two verti
es x, y are sum-distinguished (the
oloring f is sum-distinguishing) if σ(x) 6= σ(y). The irregularity strengthof G is the minimum k su
h that there exists a k-edge-
oloring f sum-distinguishing all verti
es in the graph G. The 
oloring f 
an be representedby substituting ea
h edge e by a multiedge with multipli
ity f(e). The sum
σ(x) of labels around a vertex x is then equal to the degree of x in therespe
tive multigraph.A k-edge-
oloring f of G is 
alled neighbor-sum-distinguishing if σ(x) 6=
σ(y) whenever xy is an edge of G (we refer to it as to an nsd-
oloring forshort). Su
h a lo
al variant of the irregularity strength gained great popu-larity in the twenty �rst 
entury due to the following beautiful 
onje
ture ofKaro«ski, �u
zak, and Thomason [5℄, 
ommonly 
alled the 1-2-3 Conje
-ture nowadays.Conje
ture 1. If G = (V,E) is a graph without isolated edges, then there isan nsd-
oloring f : E→{1, 2, 3} of G.Following the notation from the survey paper by Seamone [7℄ we will de-note the least k so that there is an nsd-k-edge-
oloring of a graphG by χe

Σ(G).The 1-2-3 Conje
ture thus presumes that χe
Σ(G) ≤ 3 for every graph G with-out isolated edges. The best 
urrently known general upper bound statingthat χe

Σ(G) ≤ 5 is due to Kalkowski, Karo«ski and Pfender [4℄. The 
onje
-ture is veri�ed for parti
ular graph 
lasses, e.g., bipartite graphs, see [5℄.Theorem 2. If G is a bipartite graph without isolated edges, then χe
Σ(G) ≤ 3.We will fo
us on nsd-
olorings of digraphs D = (V,A), where we will usea simpli�ed notation xy for an ar
 (x, y). Given a k-ar
-
oloring f : A →

{1, 2, . . . , k} and a vertex x ∈ V , we dis
ern out-going ar
s xy ∈ A andin-
oming ar
s yx ∈ A, and analogously the out-sum σ+(x) =
∑

xy∈A f(xy)and the in-sum σ−(x) =
∑

yx∈A f(yx) of x. Several variants of nsd-
oloringsof digraphs have already been 
onsidered.The �rst problem of this type was introdu
ed by Borowie
ki, Gryt
zuk,and Pil±niak, and 
on
erned so-
alled relative sums, de�ned for a vertex x as2



σ±(x) = σ+(x)−σ−(x). The least k so that a k-ar
-
oloring of a given digraph
D = (V,A) exists with σ±(x) 6= σ±(y) for every ar
 xy ∈ A is denoted by
χe
±(D). The authors proved in [3℄ the sharp upper bound χe

±(D) ≤ 2 validfor every digraph D.Only just then Baudon, Bensmail, and Sopena 
onsidered the least integer
k admitting a k-ar
-
oloring of a digraphD = (V,A) su
h that σ+(x) 6= σ+(y)for every xy ∈ A. We denote su
h k by χe

+(D). In [2℄ the authors showedthat χe
+(D) ≤ 3 for every digraph D and proved that given a digraph D,the problem of determining whether χe

+(D) ≤ 2 is NP-
omplete. (Note thatobviously we obtain the same thesis for the twin graph invariant χe
−(D) ofthe above one, where we require: σ−(x) 6= σ−(y) for every xy ∈ A.)The third natural variant was suggested by �u
zak [6℄, who proposedto study the sum-distinguishing requirement σ+(x) 6= σ−(y) for xy ∈ A.Barme et al. [1℄ observed that the 
orresponding parameter χe�(D) is notde�ned provided that D has an ar
 xy satisfying d+(x) = 1 = d−(y), 
alled alonely ar
. Nevertheless, they were able to prove the following upper bound.Theorem 3. If D is a digraph without lonely ar
s, then χe�(D) ≤ 3.The proof of Theorem 3 is based on the equivalen
e between the inequality

χe�(D) ≤ k and the existen
e of an nsd-k-edge-
oloring of a spe
ial (undi-re
ted) bipartite graph asso
iated with D. Thus by the 
lassi�
ation fromthe paper of Thomassen, Wu and Zhang [8℄, one may moreover determine
χe�(D) for any digraph D (without lonely ar
s) in a polynomial time now.In this note we study the inverse (in a way) of the problem of �u
zakabove, requiring that σ−(x) 6= σ+(y) for xy ∈ A (whi
h seems to be the lastnatural open issue in this new �eld). In the next se
tion we dis
uss when the
orresponding graph invariant χ̄e�(D) is well de�ned, and, surprisingly, weprove that for those digraphs χ̄e�(D) may be arbitrarily large. On the otherhand, in Se
tion 3 we show that χ̄e�(D) ≤ 4 if lonely ar
s are additionallyforbidden. Finally, in the last se
tion we pose a 
onje
ture that then χ̄e�(D) ≤
3 should hold, and present a few ri
h families of digraphs supporting this new
1-2-3-Conje
ture for digraphs.2. Boundlessness of the inverse �u
zak's problemWe 
all a digraph D = (V,A) tra
table if for a suitable k there is a k-ar
-
oloring f of D su
h that for any ar
 xy ∈ A, σ−(x) 6= σ+(y). The least su
h
k for a tra
table digraph D is denoted by χ̄e�(D).3



There are two obvious obsta
les for tra
tability. Consider a k-ar
-
oloring
f of a digraph D = (V,A). For a vertex x ∈ V , we denote by A−(x) (A+(x))the set of ar
s in D in-
oming to x (out-going from x, respe
tively). Anar
 xy ∈ A is 
alled a sour
e-sink ar
, an s-s ar
 for short, if x is a sour
eand y is a sink of D (i.e., d−(x) = 0 and d+(y) = 0). Then, inevitably,
σ−(x) = 0 = σ+(y). The situation is similar if both ar
s xy and yx belong to
A and xy is an s-s ar
 in the digraph D′ = D−yx. We then say that {xy, yx}is a sour
e-sink edge (an s-s edge for short). Then A−(x) = A+(y) = {yx},and hen
e σ−(x) = f(yx) = σ+(y). It is straightforward to see that if weforbid these two 
on�gurations in D, then A−(x) 6= A+(y) for every ar

xy ∈ A, and thus there exists a k-ar
-
oloring of D with σ−(x) 6= σ+(y) forevery xy ∈ A for su�
iently large k.Proposition 4. A digraph D is tra
table if and only if D has neither s-sar
s nor s-s edges.The three parameters χe

+, χe
− and χe� ful�ll a 
orrespondingly formulated

1-2-3-Conje
ture. Is it the 
ase for the parameter χ̄e�, too? The digraph D4drawn in Figure 1, gives us a negative answer to this question.First, observe that D4 has neither an s-s ar
 nor an s-s edge. Consideran ar
-
oloring f of D4 su
h that σ−(x) 6=σ+(y) whenever xy is an ar
 of D4.Let f(x1x2) = a, f(x3x4) = b, f(x5x6) = c, f(x7x8) = d. The digraph D4satis�es A+(x2i−1) = {x2i−1x2i} = A−(x2i), i = 1, 2, 3, 4. Moreover, for any
i, j with 1≤i < j≤4, the ar
 x2ix2j−1 belongs to D4, and hen
e

f(x2i−1x2i) = σ−(x2i) 6=σ+(x2j−1) = f(x2j−1x2j).Therefore, the 
olors a, b, c, d of the dashed ar
s x2i−1x2i, i = 1, 2, 3, 4, arepairwise distin
t, and so χ̄e�(D4) ≥ 4.Proposition 5. For any integer k ≥ 2 there is a digraph Dk with χ̄e�(Dk) ≥
k.Proof. Consider a digraph Dk with the vertex set {x1, x2, . . . , x2k} and thear
 set ⋃k

i=1

(

{x2i−1x2i} ∪
⋃k

j=i+1
{x2ix2j−1}

). Suppose that an l-ar
-
oloring
f : E(Dk) → {1, 2, . . . , l} satis�es σ−(xi) 6= σ+(xj) whenever xixj ∈ E(Dk).It is easy to see pro
eeding as above that then ne
essarily l ≥ k.Corollary 6. The parameter χ̄e� is not bounded from above by an absolute
onstant. 4
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dFigure 1: A digraph D4 where the 
olor 4 is needed3. Graphs without lonely ar
sLet us observe that in the digraph Dk from Proposition 5, the ar
s
x2i−1x2i, whi
h ne
essitate the use of a large number of 
olors, are lonelyar
s. Having this in mind, it seems natural to ask whether, if a digraph doesnot 
ontain su
h ar
s, it is possible to 
olor its ar
s in the desired way usingonly 
olors 1, 2, 3. The question remains as yet unanswered. However, weare able to show that positive integers up to four are enough in this 
ase.Note that forbidding lonely ar
s in a digraph D forbids s-s edges in D, too,and so guarantees the tra
tability of D.Theorem 7. If D is a digraph without s-s ar
s and without lonely ar
s, then
χ̄e�(D) ≤ 4.To prove Theorem 7 we adapt the 
on
ept of so-
alled asso
iated bi-partite graphs used in [1℄. Let D = (V,A) be a digraph of order n with
V = {v1, v2, . . . , vn}. The asso
iated bipartite graph of D is the undire
tedbipartite graph B(D) = (X, Y, E) of order 2n with X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn}, and the edge set de�ned as follows: xiyj ∈ E ⇔ vivj ∈
A, 1 ≤ i, j ≤ n (note that here xiyj is a shortened form for {xi, yj}).There is a one-to-one 
orresponden
e between the ar
s of D and the edgesof B(D). It is easy to see that the ar
s out-going from vi 
orrespond to theedges in
ident with xi, and the ar
s in-
oming to vj 
orrespond to the edgesin
ident with yj. In parti
ular, the ar
 vivj is lonely (in D) if and onlyif the edge xiyj is isolated (in B(D)). Let us observe that, in an obvious5



way, an ar
-
oloring of D indu
es an edge-
oloring of B(D), and vi
e versa.Moreover, for the ar
-
oloring of D and the edge-
oloring of B(D) indu
ingea
h other, we have σ+(vi) = σ(xi) and σ−(vi) = σ(yi).In the following lemma we use the group Z4 = {0, 1, 2, 3}, where i ∈ Z4is the set of integers 
ongruent to i modulo 4, i = 0, 1, 2, 3.Lemma 8. Let G = (X, Y, E) be a bipartite graph without isolated verti
esand edges. Then there exists a mapping f : E → Z4 su
h that the mapping
σ : X ∪ Y → Z4, de�ned by σ(u) =

∑

uv∈E f(uv), satis�es σ(x) ∈ {2, 3} forea
h x ∈ X and σ(y) ∈ {0, 1} for ea
h y ∈ Y .Proof. We de�ne a required edge 
oloring of G 
omponentwise. For thatpurpose let k be the number of 
omponents of G, and let Gl = (Xl, Yl, El),
l ∈ {1, 2, . . . , k}, be the lth 
omponent of G, where Xl ⊆ X and Yl ⊆ Y ;noti
e that |El| ≥ 2. Suppose that Xl = {x0, x1, . . . , xp}, with d = d(x0) ≥
d(xi) for i = 1, 2, . . . , p, and let y1, y2, . . . , yd be the neighbors of x0.If d ≥ 2, we determine values of f for edges belonging to El in severalstages. In the stage 0 we put on ea
h edge in El the temporary value 0.In the stage j ∈ {1, 2, . . . , p} we 
hoose an arbitrary path P in Gl joining
x0 with xj , and we add to temporary values of the edges of P alternately 1and 3. Sin
e 1+ 3 = 0, and 0 is the identity element in Z4, temporary sumvalues do not 
hange for inner verti
es of P , hen
e after �nishing the stage jwe have temporary sum values σ(x0) = j1, σ(xi) = 3 for i = 1, 2, . . . , j, and
σ(u) = 0 for all remaining verti
es u ∈ Xl ∪ Yl.Consider the situation after �nishing the stage p, when σ(x0) = p1 = qwith p ≡ q (mod 4) and q ∈ {0, 1, 2, 3}. If q ∈ {2, 3}, we are done.If q ∈ {0, 1}, in the stage p + 1 we add 1 to the temporary value of theedge x0yi for ea
h i satisfying 1 ≤ i ≤ 2 − q to �nish with σ(yi) = 1 and
σ(x0) = 2.In the 
ase d = 1 we have Gl

∼= K1,p+1 with p ≥ 1, and El = {xiy1 : i =
0, 1, . . . , p}. Colors of f for the edges in El are then de�ned as follows (andit is straightforward to 
he
k that the mapping σ, derived from f , has therequired property for all verti
es in Xl ∪ Yl):If p is odd, then f(xiy1) = 2 for i = 0, 1, . . . , p.If p = 2, then f(x0y1) = f(x1y1) = f(x2y1) = 3.If p is even, p ≥ 4, then f(x0y1) = f(x1y1) = f(x2y1) = 3 and f(xiy1) = 2for i = 3, 4, . . . , p.This 
ompletes the proof of the lemma.6



Proof of Theorem 7 Let B be the asso
iated bipartite graph for the digraph
D = (V,A), and let G = (X, Y, E) be 
reated from B by ex
luding all itsisolated verti
es. The absen
e of lonely ar
s in D 
auses the absen
e ofisolated edges in G. Therefore, by Lemma 9, there is a 
oloring f : E → Z4su
h that σ(x) ∈ {2, 3} for ea
h x ∈ X and σ(y) ∈ {0, 1} for ea
h y ∈ Y .Consider the mapping f̃ : A → {1, 2, 3, 4} de�ned so that if xiyj ∈ E(with xi ∈ X and yj ∈ Y ), then f̃(vivj) ∈ f(xiyj); this is well-de�ned sin
ethe 
ongruen
e 
lass f(xiyj) ∈ {0, 1, 2, 3} has a unique representative in theset {1, 2, 3, 4}. Let σ̃− be the in-sum fun
tion and σ̃+ the out-sum fun
tionthat 
orrespond to f̃ . To show that f̃ distinguishes verti
es vi, vj ∈ V with
vivj ∈ A we �rst note that d−(vi) + d+(vj) > 0 (otherwise vivj would be ans-s ar
 in D), and then we reason as follows:If d−(vi) = 0, then d+(vj) > 0, and so σ̃−(vi) = 0 < σ̃+(vj).If d+(vj) = 0, then d−(vi) > 0, hen
e σ̃−(vi) > 0 = σ̃+(vj).If d−(vi) > 0 and d+(vj) > 0, from the de�nition of the mapping f̃ itis 
lear that σ̃−(vi) ∈ σ(yi) ∈ {0, 1} and σ̃+(vj) ∈ σ(xj) ∈ {2, 3}, whi
himmediately yields σ̃−(vi) 6= σ̃+(vj).4. The 
onje
tureNote that in the proof of Theorem 8 we have distinguished adja
ent ver-ti
es of a digraph D in a stronger way than ne
essary. Indeed, if vivj is anar
 of D, then the in-sum for vi is not only distin
t from the out-sum for vj ,but those sums even belong to distin
t 
ongruen
e 
lasses modulo 4. This iswhy we believe that the following 
onje
ture holds true.Conje
ture 9. If D is a digraph without s-s ar
s and lonely ar
s, then
χ̄e�(D) ≤ 3.A symmetri
 digraph D = (V,A) is su
h that xy ∈ A ⇒ yx ∈ A. Ifa k-ar
-
oloring f : A → {1, 2, . . . , k} of a symmetri
 digraph D satis�es
xy ∈ A ⇒ σ+(x) 6= σ−(y), then it satis�es yx ∈ A ⇒ σ−(y) 6= σ+(x),too, and vi
e versa. As a symmetri
 digraph 
annot 
ontain s-s ar
s, byTheorem 3 we obtain the following proposition supporting Conje
ture 9.Proposition 10. If D is a symmetri
 digraph without lonely ar
s, then
χ̄e�(D) = χe�(D) ≤ 3.Moreover, a 
onne
ted symmetri
 digraph D whose underlying graph isa 
y
le of an odd length 2l + 1, satis�es χ̄e�(D) = χe�(D) = χe

Σ(B(D)) =7



χe
Σ(C4l+2) = 3. Thus the upper bound in Conje
ture 9 
annot be redu
ed.In order to further support the plausibility of its thesis we additionally proveit for a spe
ial 
lass of digraphs. We say a 
omponent C of a bipartite graph

(X, Y, E) is an X-star if C is a star with |V (C)∩X| = 1; similarly is de�neda Y -star.Theorem 11. Let D be a digraph without s-s ar
s and lonely ar
s and let
B(D) = (X, Y, E). If B(D) has no X-star 
omponents or B(D) has no
Y -star 
omponents, then χ̄e�(D) ≤ 3.Proof. Suppose �rst that B(D) has no X-star 
omponents and let G =
(X ′, Y ′, E) be the graph 
reated by ex
luding all isolated verti
es from B(D).Pro
eeding analogously as in the proof of Lemma 8 we prove that there is amapping f : E → Z3 = {0, 1, 2} su
h that σ(x) ∈ {1, 2} for ea
h x ∈ X ′ and
σ(y) = 0 for ea
h y ∈ Y ′ (in this 
ase i ∈ Z3 is the set of integers 
ongruentto i modulo 3, i = 0, 1, 2).Let k be the number of 
omponents of G and let Gl = (Xl, Yl, El), l ∈
{1, 2, . . . , k}, be the lth 
omponent of G, where Xl ⊆ X ′ and Yl ⊆ Y ′. Fromour assumptions it follows that the set X = {x1, x2, . . . , xp} satis�es p ≥ 2;let q = ⌊p

2
⌋.In the stage 0 we assign 0 as the temporary value of f to ea
h edge of El.In the stage j ∈ {1, 2, . . . , q} we 
hoose an arbitrary path P in Gl joining

x2j−1 to x2j , and we add to temporary values of the edges of P alternately1 and 2. If p is even, we are done. If p is odd, in the stage q + 1 we pro
eedsimilarly as above with a path in Gl joining x1 to xp.The mapping f is then used to de�ne the mapping f̃ : A → {1, 2, 3}similarly as in the proof of Theorem 7. Sin
e f̃ distinguishes adja
ent verti
esof D in the required way, we have χ̄e�(D) ≤ 3.If B(D) has no Y -star 
omponents, we pro
eed the same way as above,this time however assuring that σ(y) ∈ {1, 2} for ea
h y ∈ Y ′ and σ(x) = 0for ea
h x ∈ X ′.Corollary 12. If T is an n-vertex tournament, n ≥ 3, then χ̄e�(T ) ≤ 3.Proof. Let V (T ) = {v1, v2, . . . , vn}. By the way of 
ontradi
tion we provethat B(T ) has no X-stars. Indeed, otherwise we may suppose without lossof generality that an X-star C of B(T ) satis�es V (C) ∩ X = {x1} and
E(C) ⊇ {x1y2, x1y3}. Sin
e d(y2) = 1 = d−(v2), v1v2 ∈ E(T ) and T is atournament, we have d+(v2) = n − 2 = d(x2), v2v1 /∈ E(T ), v2v3 ∈ E(T ),8



x2y3 ∈ E(B(T )) and d(y3) ≥ 2, a 
ontradi
tion. Thus, by Theorem 11,
χ̄e�(T ) ≤ 3.Another wide family of examples may also be derived from the resultof Thomassen, Wu, and Zhang [8℄, who su

eeded to determine χe

Σ(G) forany bipartite graph G without isolated edges, and in parti
ular proved that
χe
Σ(G) = 2 if δ(G) ≥ 3. Consequently, any digraph D with χe�(D) = 3supports Conje
ture 9, too. Indeed, if χe�(D) = 3 = χe

Σ(B(D)), then by [8℄it follows that δ(B(D)) = 2, i.e. B(D) = (X, Y, E) has neither X-star nor
Y -star 
omponents, and hen
e, by Theorem 11, χ̄e�(D) ≤ 3.A
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