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1. Introduction

In the planar restricted circular three body problem (PRC3BP) two large masses µ

and 1 − µ rotate on planar circular Keplerian orbits. For convenience we will call

the larger body - the Sun and the smaller massive body - the planet The problem

deals with the motion of a third massless particle (the comet or the spacecraft), which

moves on the same plane as the two larger bodies under their gravitational pull. This

problem was considered by Llibre, Martinez and Simo in [20] for energies of solutions

close to the energy of the libration point Lµ
2 . There it has been shown that there exists

a family of parameters {µk}∞k=2 for which we have a homoclinic orbit to the libration

point Lµk
2 . Moreover, it has been shown that for µ close to any of the values µk, for

a Lyapounov orbit around Lµ
2 with energy sufficiently close to the energy of Lµ

2 , its

stable and unstable manifolds intersect transversally. This dynamics is restricted to

a constant energy manifold and leads to a homoclinic tangle and symbolic dynamics.

Later a similar problem has been numerically investigated by Koon, Lo, Marsden and

Ross [17], where smaller energies were considered. In such a case the chaotic dynamics

is extended to include homoclinic and heteroclinic tangles along stable and unstable

manifolds of Lyapounov orbits around both the libration point Lµ
1 and Lµ

2 . This has

been later proven by Wilczak and Zgliczyński using a method of covering relations and

rigorous computer assisted computations in [28, 29], for the case of the Sun-Jupiter

system and the energy of the comet Oterma.

All of the above mentioned results have a common feature: since the problem follows

from an autonomous Hamiltonian, the transversality of the intersections and the chaotic

dynamics of the system are always restricted to a constant energy manifold. In this paper

we are going to consider the planar restricted elliptic three body problem (PRE3BP),

where the equations are no longer autonomous, which means that a change of energy

of solutions is possible. We will consider the circular problem considered by Llibre,

Martinez and Simo in [20] and generalize it to allow the orbits of the planet and the

Sun to be elliptic with small eccentricities e. We will treat this as a perturbation of the

circular case. We will show that most of the Lyapounov orbits around Lµ
2 persist under

such perturbation as KAM-tori. Moreover, we will show that the symbolic dynamics

associated with these orbits also survives. This kind of the ’structural stability’ of

symbolic dynamics constitute the main result of this paper. It will turn out that we

also have chaotic diffusion along the energy level. In effect the dynamics of the elliptic

problem is by one dimension richer than the dynamics of the circular problem, where

all solutions are restricted to a constant energy manifold.

The diffusion between energies discussed in this paper follows from a mechanism

similar to the 1964 Arnold’s example [2]. Arnold conjectured that this phenomenon

appears in the three body problem. The result of this paper is a small step towards a

proof of this conjecture, but the described dynamics does not fulfill all requirements.

First of all, prior to perturbation we do not have a fully integrable system. We start with

the circular problem with a setting in which we already have a transversal homoclinic
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connection between Lyapounov orbits, which in our setting play the role of lower

dimensional normally hyperbolic invariant tori. Such systems are referred to as ”a priory

unstable”, or even ”a priory chaotic”. Secondly, and most importantly, our diffusion is

between energies with distance of order
(
eµ1/3

)1/2
and not of order one.

Throughout some of the so far explored examples a certain pattern can be observed

in the methods used for problems involving diffusion in priory unstable systems (see for

example [22] for a result of Moeckel on detection of transition tori in the case of the

planar five body problem; or the work of Delshams, Llave and Seara [8] on diffusion

of energy for perturbations of geodesic flows on a two dimensional torus; also Wiggins

[25], [26] discusses this mechanism in the case of perturbations of completely integrable

systems). First a normally hyperbolic invariant manifold foliated by invariant tori is

found. The tori are required to have hyperbolic stable and unstable manifolds and a

transversal intersection of these manifolds. Secondly a perturbation of the system is

considered. By perturbation theory ([15], [27]) of normally hyperbolic manifolds, the

normally hyperbolic invariant manifold and its stable and unstable manifolds persist

under the perturbation. Next step is to show that on the perturbed invariant manifold

most of the invariant tori survive. This under appropriate nondegeneracy conditions is

a result of the Kolmogorov Arnold Moser Theory (KAM) [3],[16]. Using KAM-technics

(for example [14], [15] or [31]) it can be shown that most of the invariant tori persist

and form a Cantor set having a positive measure in the invariant manifold. The last

step is to show that the stable and unstable manifolds of the surviving tori intersect

transversally. This can be done by the use of a Melnikov type method along a homoclinic

orbit of the unperturbed problem. The transversal intersections between the invariant

manifolds of the perturbed tori lead to homoclinic tangles for each of the surviving tori.

In addition to this we also have a chaotic diffusion along the Cantor set of homoclinic

tangles between the tori. In this paper we will follow this procedure.

When applying the method to prove the existence of transition chains for a given

physical problem the steps of the above described procedure, which present the biggest

obstacles are usually the verification of the assumptions of the KAM theorem and

computation of the Melnikov integral.

The fundamental role for our investigation is played by the Hill’s problem. In

the neighborhood of the libration point the PCR3BP and PER3BP, when written in a

suitably rescaled Hill’s coordinates, are perturbations of the Hill’s problem depending on

two small parameters µ and e. This gives us a ’local’ picture around Lµ
2 , the existence of

normally hyperbolic invariant manifold and KAM-tori. In our case the twist property

needed for the KAM theorem follows from the Lyapounov-Moser Theorem [23]. For

sufficiently small µ we will prove the twist property for the family of periodic orbits

around Lµ
2 , by approximating the PRC3BP with the Hill’s problem and thus obtain the

following theorem (for a detailed formulation see Theorem 31).

Theorem 1 There exist positive constants RHill, κ, µ∗ ∈ R such that for all mass

parameters µ < µ∗ and any perturbation e such that eµ−2/3 < κ most Lyapounov orbits

with radii in Hill’s coordinates not exceeding RHill are perturbed to quasi periodic orbits
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(in other words, to invariant two dimensional invariant tori in extended phase space).

The set of radiuses for which the tori survive forms a Cantor set with complement

measure smaller than O(
(
eµ−1/3

)1/2
).

Our second result concerns the study of the stable and unstable leaves of the Cantor

set of surviving KAM tori. We do so by applying a modification of a Melnikov method

to obtain the following result (for a detailed formulation see Theorem 46).

Theorem 2 Assume that for the sequence of masses {µk}∞k=2 (the sequence is specified

in Theorem 3) the twist condition holds and that a derivative of a Melnikov integral

(93) at zero is nonzero, then for any given µk there exists a radius R(µk) such that for

perturbations e with eµ
−2/3
k < κ and sufficiently small eµ

−1/3
k there exists a homoclinic

and a heteroclinic tangle between the surviving tori or radii smaller than R(µk). The

tangle implies existence of symbolic dynamics and diffusion in energy. The diffusion

occurs between surviving tori on an interval of energies of order
(
eµ

−1/3
k

)1/2

.

To apply Theorem 2 we need to back the argument by numerical verification of its

assumptions. We have verified the twist condition numerically for large masses µk and

provided a rigorous argument that for sufficiently small masses the condition holds true.

For the Melnikov integral (93) we can rigorously prove that it is convergent and that it

is zero at zero. It needs to be stressed though that the assumption that the derivative

of the Melnikov integral at zero is nonzero has only been verified numerically.

We believe that the above mentioned numerical computations can be performed

using an rigorous-computer-assisted approach in the spirit of [28]. Such arguments

require careful estimates, use of topological tools, and are the subject of ongoing work.

In our work we have been unable to obtain uniform bounds for the size of the radii

R(µk) from Theorem 2 with respect to µk. From our proof it only follows that these

need to decrease together with µk so that at least µ
−1/3
k R(µk) is smaller than some

constant. It is possible though that in a number of needed estimates R(µk) has to be

chosen even smaller. We remark also that the symbolic dynamics proved in Theorem

2 will hold not only for the family of parameters {µk}, but also for other masses µ for

which |µk − µ| < εk with sufficiently small εk.

The paper is organized as follows. Section 2 contains preliminaries, where we recall

the earlier results on the planar restricted three body problem of [20], and introduce

basic facts about the Hill’s problem and the PRE3BP. In Section 3 we present the

Lyapounov–Moser theorem [23] and show how to apply it to obtain the twist property.

In Section 4 we show that we have a twist on the family of Lyapounov orbits around

Lµ
2 . In Section 5 we apply the normally hyperbolic invariant manifold theorem together

with the KAM Theorem to show that most of the Lyapounov orbits around Lµ
2 persist

under perturbation from the circular problem to the elliptic problem and prove the first

of our two main theorems. In Section 6 we use a Melnikov type argument to detect the

transversal intersections between the stable and unstable manifolds of the perturbed

Lyapounov orbits. In Section 7 we compute the Melnikov integral. In Section 8 we

gather together our results and prove Theorem 2.
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2. Preliminaries

2.1. The Planar Restricted Circular Three Body Problem

In the planar restricted circular three body problem (PRC3BP) we consider the motion

of a small massless particle (a comet or a spacecraft), under the gravitational pull of

two larger bodies of mass µ and 1 − µ (called the planet and the Sun, respectively)

which move around the origin on circular orbits of period 2π on the same plane as the

massless body. The Hamiltonian of the problem is given by [1]

H(µ, q, p, t) =
p2

1 + p2
2

2
− 1− µ

r1(t)
− µ

r2(t)
, (1)

where (p, q) = (q1, q2, p1, p2) are the coordinates of the massless particle and r1(t) and

r2(t) are the distances from the masses 1 − µ and µ respectively. After introducing a

new coordinates system (x, y, px, py)

x = q1 cos t + q2 sin t, px = p1 cos t + p2 sin t,

y = −q1 sin t + q2 cos t, py = −p1 sin t + p2 cos t,
(2)

which rotates together with the two larger masses, the larger masses become motionless

and one obtains [1] an autonomous Hamiltonian

H(µ, x, y, px, py) =
(px + y)2 + (py − x)2

2
− Ω(x, y), (3)

where

Ω(x, y) =
x2 + y2

2
+

1− µ

r1

+
µ

r2

,

r1 =
√

(x− µ)2 + y2, r2 =
√

(x + 1− µ)2 + y2. (4)

The motion of the particle is given by the equation

ẋ = J∇H(µ,x), (5)

where x = (x, y, px, py) ∈ R4, J =

(
0 Id

−Id 0

)
and Id is a two dimensional identity

matrix.

The movement of the flow (5) is restricted to the hypersurfaces determined by the

energy level C,

M(µ,C) = {(x, y, px, py) ∈ R4|H(µ, x, y, px, py) = C}. (6)

In the x, y coordinates this means that the movement is restricted to the so called Hill’s

region defined by

R(µ,C) = {(x, y) ∈ R2|Ω(x, y) ≥ −C}.
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Figure 1. The Hill’s region for various energy levels: when the energy C is smaller
than Cµ

2 (a), when C = Cµ
2 (b) and when C = Cµ

1 > Cµ
2 (c).

The shape of the Hill’s region R(µ,C) will differ with C (see Figure 1). The focus of

our attention in this paper will be on the case when the energy C is equal to or slightly

larger than Cµ
2 . For the energy C equal to Cµ

2 we have the libration point Lµ
2 which is

of the form (−k, 0, 0,−k) with k > 0. We shall investigate the dynamics inside of the

inner part of the Hill’s region to the right of the point Lµ
2 . We shall refer to it as the

”Sun region” (see Figure 1). The boundary of this region (see Figures 1 and 2) is a

zero velocity curve (z.v.c.). The linearized vector field at the point Lµ
2 has two real and

two purely imaginary eigenvalues, thus it follows [20] from the Lyapounov theorem that

for energies C larger and sufficiently close to Cµ
2 there exists a family of periodic orbits

lµ(C) emanating from the equilibrium point Lµ
2 .

2
L

Z.v.c.

2
L

Figure 2. The unstable manifold of Lµ
2 in the x, y coordinates.

The PRC3BP admits the following reversing symmetry

S(x, y, px, py) = (x,−y,−px, py). (7)

We will say that an orbit q(t) is S-symmetric when

S(q(t)) = q(−t). (8)

In PRC3BP the Lyapounov orbits are S-symmetric (we have to choose the initial time

so that orbits start from the section {y = 0} at time t = 0).

We have the following results about the stable and unstable manifolds of Lµ
2 and

lµ(C).
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Theorem 3 ([20, Theorem A]) For µ sufficiently small the branch of W u
Lµ

2
contained

in the Sun region (see Figures 1 and 2) has a projection on the bounded component of

R(µ,C) given by

d(t) = µ1/3

(
2

3
N(∞)− 31/6 + M(∞) cos t + o(1)

)
, (9)

α(t) = −π + µ1/3 (N(∞)t + 2M(∞) sin t + o(1)) , (10)

where d is the distance to the z.v.c., α the angular coordinate, N(∞) and M(∞) are

constants and the expressions remain true out of a given neighborhood of Lµ
2 . The

parameter t means the physical time from a suitable origin. The terms o(1) tend to

zero when µ does and they are uniform in t for t = O(µ−1/3).

In particular the first intersection with the x axis is orthogonal to that axis, giving

a S-symmetric homoclinic orbit for a sequence of values µ which has the following

asymptotic expression:

µk =
1

N(∞)3k3
(1 + o(1)). (11)

Let us now introduce a notation for the S-symmetric homoclinic orbit to Lµk
2

obtained in Theorem 3 for the parameters µk given in (11). We will denote such an

orbit by q0
µk

(t) (see Figure 2). We assume that such an orbit starts at a section {y = 0}
at time t = 0.

Theorem 4 ([20, Theorem B]) For µ and ∆C = C − Cµ
2 sufficiently small, the

branch of W u (lµ (C)) contained in the Sun region intersects the plane y = 0 for x > 0

in a curve diffeomorphic to a circle (see Figure 3) given by

x = xw −
√

∆C (N + 2M cos τ)−1 (2M + N cos Mf ) (K1 cos τ cos σ −K2 sin τ sin σ)

+ µ1/3M(1− cos Mf )

+ µ2/3

{
−2MN

3
(1− cos Mf ) + M2 sin2 Mf − 2

9
Nα− M

3
α cos Mf

}
+ O(µ),

ẋ = sin Mf [
√

∆CN (N + 2M cos τ)−1 (K1 cos τ cos σ −K2 sin τ sin σ)

+ µ1/3M + µ2/3

{
MN

3
+ 2M2 cos Mf +

M

3
α

}
] + O(µ)

where xw, M, N, τ, K1, K2 are suitable constants, α measures the distance from µ to

some µk given by Theorem 3, Mf is obtained implicitly from
(

1

3
Nα + µ−2/3

√
∆C3M (N + 2M cos τ)−1 (K1 cos τ cos σ −K2 sin τ sin σ)

)
π

N

+NMf + 2M sin Mf = o(1), (12)

and σ, ranging from 0 to 2π, is the parameter of the curve.

Moreover for points in the (µ,C) plane such that there exists a µk of Theorem 3

for which

∆C > Lµ
4/3
k (µ− µk)

2 (13)
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holds (where L is a constant), there exist S-symmetric transversal homoclinic orbits. In

particular, for µ = µk there exist symmetrical transversal homoclinic orbits q0
µkC for the

periodic orbit lµk
(C) for C > Cµk

2 arbitrarily close to Cµk
2 .

Remark 5 In the original version of Theorems 3 and 4 the C was taken as the Jacobi

constant C = F where

F (x, y, px, py) = −2H(µ, x, y, px, py) = 2Ω(x, y)− (
ẋ2 + ẏ2

)
. (14)

In this paper we have rewritten the Theorems with C as the Hamiltonian of the PRC3BP,

which means that we have a change of sign in C compared with the original version.

Remark 6 Using a standard dynamical system theory argument, from the Birkhoff-

Smale homoclinic theorem, the transversal homoclinic connections to Lyapounov orbits

imply chaotic symbolic dynamics of the system. This is a content of Theorem C in

[20]. Since the system is autonomous this dynamics is restricted to the constant energy

manifold.

Remark 7 For sufficiently small µ = µk, the curves (obtained in Theorem 4) on

{y = 0} associated with the stable an unstable manifolds of lµk
(C) intersect transversally

at an angle O(µ
1/3
k ). This can be derived based on the parameterization of the curves

from Theorem 4 combined with the symmetry property (8) of the PRC3BP. This is done

in the Appendix. For more details on the interpretation of the curves from the theorem

see also [20].

Figure 3. The intersections of the stable and unstable manifolds of lµ (C) in the
PRC3BP.

2.2. The Hill’s Problem

Let us consider a change of coordinates which shifts the origin to the smaller body of the

mass µ and rescales the coordinates by the factor µ−1/3. We will refer to the following

as the Hill’s coordinates.

x̄ = µ−1/3 (x− (µ− 1, 0, 0, µ− 1)) . (15)
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We will rewrite the Hamiltonian (3) and derive the formula of the Hill’s problem and

list a number of facts which will be relevant for us in the future.

Let us start with a simple lemma.

Lemma 8 Consider a Hamiltonian H : Rn × Rn → R and a transformation p̄ = βp,

q̄ = βq. Then (p(t), q(t)) is a solution of the Hamiltonian system for H(p, q) if and only

if (p̄(t), q̄(t)) is a solution of the Hamiltonian system for H̄(p̄, q̄) = β2H
(

p̄
β
, q̄

β

)
.

The shift of the origin present in the transformation (15) is clearly canonical hence

we can use Lemma 8 to obtain the Hamiltonian in new variables with β = µ−1/3

H̄(µ, x̄) = µ−2/3H
(
µ, µ1/3x̄ + (µ− 1, 0, 0, µ− 1)

)
. (16)

By expanding Ω in the new coordinates around zero we can rewrite our family of

Hamiltonians as

H̄(µ, x̄) = H̄(µ, x̄, ȳ, p̄x, p̄y) =
(p̄x + ȳ)2 + (p̄y − x̄)2

2
+ (17)

− 1

r̄
− 3

2
x̄2 + O(µ1/3) + C(µ), for r̄ < αµ−1/3

where C(µ) = µ−2/3
(
(1− µ) + (1− µ)2 /2

)
and r̄ =

√
x̄2 + ȳ2. The term O(µ1/3)

depends on (x̄, ȳ) and can be written as a function a(µ, x̄, ȳ), which for any sufficiently

small α < 1 and µ ∈ [0, 1], r̄ < αµ−1/3 satisfies

|a(µ, x̄, ȳ)|
r3

≤ M(α).

The reason for introducing α is, that we have to be away from the Sun in order for

Taylor series of 1
r1

to be convergent. Observe that we can drop the term C(µ).

It should be stressed that H̄ depends analytically on x̄ and µ1/3, hence the

derivatives of the O(µ1/3) with respect to x̄ are still O(µ1/3). Therefore for fixed µ

x̄′ = J∇H̄(µ, x̄) = J∇H̄(0, x̄) + O(µ1/3).

The term O(µ1/3) is uniform in x̄ for |x̄| ≤ αµ−1/3 for any fixed sufficiently small α < 1.

The Hamiltonian H̄(0, x̄) is the Hamiltonian of the Hill’s problem

HHill(x̄) = H̄(0, x̄). (18)

If we denote by qHill(t) the solution of the Hill problem and by qµ(t) the solution

of the PCR3BP, both expressed in Hill’s coordinates (15) and both starting from the

same initial condition, then the following holds

|qHill(t)− qµ(t)| ≤ el|t|O(µ1/3), (19)

provided there exist 0 < α < 1 and a compact convex set Z ⊂ B(0, αµ−1/3) × R2,

such that Z contains both qHill([0, t]) and qµ([0, t]) and (0, 0) /∈ πx,y(Z). The constant l

depends on Z.
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Let us now list a few properties of the Hill’s problem. The problem has two

equilibrium points, LHill
1 = (−3−1/3, 0, 0,−3−1/3) and LHill

2 = (3−1/3, 0, 0, 3−1/3). The

linearization of x′ = J∇HHill at LHill
2 is given by x′ = Ax, where

A =




0 1 1 0

−1 0 0 1

8 0 0 1

0 −4 −1 0


 . (20)

The eigenvalues of A are: ±α1, ±α2 with α1 =
√

1 + 2
√

7 and α2 =
√

1− 2
√

7. The

Hill problem has a reversing symmetry S given by (7).

2.3. The Planar Restricted Elliptic Three Body Problem

The planar restricted elliptic three body problem (PRE3BP) differs from the PRC3BP

by the fact that the two larger bodies move on elliptic orbits of eccentricities e instead

of circular orbits. The period of these orbits is 2π and the Hamiltonian of the PRE3BP

is analogous to (1), with the only difference that in r1(t) and r2(t) we take the distance

from the elliptic instead of the circular orbits of the two larger masses. The trajectories

of these orbits can be written as (see [30]) ((µ− 1)x(t), (µ− 1)y(t)) for the body µ and

(µx (t) , µy (t)) for (1− µ), where

x(t) = (1− e cos ψ) cos ψ + O(e2),

y(t) = (1− e cos ψ) sin ψ + O(e2), (21)

ψ(t) = t + 2e sin t + O(e2).

If one changes into the rotating coordinates (2), which is a canonical transformation

(see [21]), then the Hamiltonian (1) becomes (for a detailed derivation see the Appendix)

He(µ,x, t) = H(µ,x) + eG(µ,x, t) + O(e2µ−2/3), (22)

where H is the Hamiltonian of the PRC3BP (3), r2 is given in (4), G is 2π periodic over

t and is given by the formula

G =
1− µ

(r1)
3 ḡ(µ, x, y, t) +

µ

(r2)
3 ḡ(µ− 1, x, y, t), (23)

ḡ(α, x, y, t) = α(−2y sin t + x cos t)− α2 cos t. (24)

The term O(e2µ−2/3) = a(x, y, e, µ, t) satisfies |a(x,y,e,µ,t)|
e2µ−2/3 < M(δ, κ, R), on the set defined

by the following conditions

µ ∈ [0, 1], t ∈ R, eµ−2/3 < κ (25)

r1 > δ, r2 ≥ δµ1/3,
√

x2 + y2 ≤ R,
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were δ > 0 measures the closest approach to the Sun and to the planet (multiplied by

µ−1/3) is a number around 1/2, R is the radius of the ball containing all orbits of interest

in our problem, hence we can take R = 2 and κ is sufficiently small number (for more

details on κ see the derivation in the Appendix).

We consider points (x, y) inside of the ”Sun region” (see Figure 1) which means

that r2 > 1
2
‖Lµ

2 − (µ− 1, 0, 0, µ− 1)‖ > δµ1/3 for some δ > 0. The Hamiltonian (22)

can be rewritten in Hill’s coordinates (15) as

H̄e(µ, x̄, t) = H̄(µ, x̄) + eḠ (µ, x̄, t) + O(e2r̄2), (26)

Ḡ (µ, x̄, t) = µ−2/3G(µ, µ1/3x̄+ (µ− 1, 0, 0, µ− 1) , t), (27)

Further, in order to understand the mutual relation between e and µ for which

we have interesting dynamical phenomena, it will be important to observe that after

rearranging and neglecting terms independent of x̄, (26) can be written as

H̄e(µ, x̄, t) = H̄(µ, x̄) + eµ−1/3 2ȳ sin t− x̄ cos t

r̄3
+ O(eµ2/3) + O(e2µ−4/3), (28)

on the following set

µ ∈ [0, 1], t ∈ R, eµ−2/3 < κ

r̄ > δ, r̄ ≤ M1, M1µ
1/3 < 1.

The Hamiltonian H̄e generates a differential equation

x̄′ = f(µ, x̄) + eg(µ, x̄, t) + O(eµ1/3) + O(e2µ−4/3) (29)

where

f(µ,x) = J∇H̄(µ,x) (30)

g(µ,x, t) = J∇Ḡ(µ,x). (31)

Remark 9 In our future consideration we shall use equation (28) in a neighborhood

of L̄µ
2 = µ−1/3 (Lµ

2 − (µ− 1, 0, 0, µ− 1)) of constant radius (later denoted as RHill), in

which Lyapounov orbits reside. In such neighborhood the term O(eµ2/3) of (28) together

with higher order terms are uniform. It needs to be emphasized though that in order for

(28) to be valid for a given µ, we first need to choose e sufficiently small so that the

estimate eµ−2/3 < κ in (25) holds true.

3. From Lyapounov-Moser Theorem to Twist Property at Equilibrium

Points

In this section we shall show how one can prove the twist property at an equilibrium

point using the Lyapounov-Moser Theorem [23]. First the Theorem will be stated.

Next a number of observations on the Theorem in the special case of one real and one

pure imaginary eigenvalue with just two degrees of freedom will be made. This will be

followed by a brief outline of the construction by which the Theorem was proved [23]

from which the twist property will follow.
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Theorem 10 (The Lyapounov-Moser Theorem [23]) Let

q̇ν = Hpν (q, p) (32)

ṗν = −Hqν (q, p)

ν = 1, . . . , n, be an analytic Hamiltonian system with n degrees of freedom and an

equilibrium solution q = p = 0. Let α1, . . . , αn,−α1, . . . ,−αn be the eigenvalues of the

linearization of (32) at the equilibrium point. Assume that the eigenvalues

α1, . . . , αn,−α1, . . . ,−αn

are 2n different complex numbers and that α1, α2 are independent over the reals. Let us

also assume that for any integer numbers n1 and n2

αν 6= n1α1 + n2α2 for ν ≥ 3.

Then there exists a four parameter family of solutions of (32) of the form

qν = φν(ξ1, ξ2, η1, η2) (33)

pν = ψν(ξ1, ξ2, η1, η2)

where

ξk(t) = ξ0
ke

tak(ξ0
1η0

1 ,ξ0
2η0

2), ηk(t) = η0
ke
−tak(ξ0

1η0
1 ,ξ0

2η0
2) for k = 1, 2, (34)

and

a1(ξ
0
1η

0
1, ξ

0
2η

0
2) = α1 + ..., a2(ξ

0
1η

0
1, ξ

0
2η

0
2) = α2 + ... (35)

are convergent power series. The series φν , ψν converge in the neighborhood of the origin

and the rank of the matrix (
φνξk

φνηk

ψνξk
ψνηk

)

ν=1,2,...,n
k=1,2

is four. The solutions (33) depend on four small enough complex parameters ξ0
k, η

0
k.

If in addition α1, α2, −α1, −α2 contain their complex conjugates, the solution can

be chosen to be real, depending on 4 real parameters.

In the case of the PRC3BP, n is simply equal to two and the equations (33), (34)

describe all the solutions near the neighborhood of the equilibrium point. We will be

interested in the application of the Theorem to the libration point Lµ
2 , where α1 is real

and α2 is pure imaginary. From now on we will restrict our discussion to this particular

case. The following remarks and lemmas adapt Theorem 10 to this setting.

Remark 11 When the system (32) is generated by a real Hamiltonian and if α1 is real

and α2 is pure imaginary then for the real solutions of (32) of the form (33) the functions

ξk(t) and ηk(t) are invariant under the involution [19, page 102]

Jw(ξ1, ξ2, η1, η2) = (ξ̄1, iη̄2, η̄1, iξ̄2). (36)
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Let us also note that the original version of Theorem 10 in [23] contained an error.

There an involution

Jw(ξ1, ξ2, η1, η2) = (ξ̄1, η̄2, η̄1, ξ̄2)

was proposed. This stands in conflict with a requirement that the transformation Φ in

the proof of Theorem 10 [23] should be canonical (See also equations (51) and (52)).

The reality condition (the fact that a point (ξ1, ξ2, η1, η2) given in new coordinates

represents a point from R4 in original ones) is

Jw(ξ1, ξ2, η1, η2) = (ξ1, ξ2, η1, η2). (37)

The subspace of C4 of fixed points of Jω, Fix(Jω) is given by

ξ1 ∈ R, η1 ∈ R, ξ2 = reiϕ, η2 = ire−iϕ,

where r, ϕ ∈ R. On Fix(Jw) we will use the coordinates (ξ1, η1, r, ϕ).

Remark 12 From the proof of the convergence of the series (33), (35) during the proof

of Theorem 10 in [23], it follows that if we consider a family of Hamiltonians

Hλ : Rn × Rn → R,

which is an analytic function of all variables including the parameter and possesses for

each λ ∈ I, where I is a closed interval, a (locally) unique fixed point pλ of center-saddle

type depending analytically on λ, then the radius of convergence of the series (33), (35)

around pλ can be chosen uniformly for close values of λ.

Lemma 13 If α1 is real and α2 is pure imaginary then for all real solutions of (32) the

series a1 from the Theorem 10 is real and the series a2 is pure imaginary. Moreover if

we choose a real periodic solution

qν(t) = φν(0, ξ2(t), 0, η2(t))

pν(t) = ψν(0, ξ2(t), 0, η2(t))
ν = 1, 2 (38)

where ξ2(t) and η2(t) are given by (34), then there exist two real numbers r and ϕ such

that

ξ2(t) = reta2(0,ir2)+iϕ

η2(t) = ire−ta2(0,ir2)−iϕ.

Proof. From Remark 11 we know that the real solutions satisfy the reality

condition (37). We therefore have

ξ0
1e

ta1(ξ0
1η0

1 ,ξ0
2η0

2) = ξ0
1e

ta1(ξ0
1η0

1 ,ξ0
2η0

2) (39)

ξ0
2e

ta2(ξ0
1η0

1 ,ξ0
2η0

2) = i
(
η0

2e
−ta2(ξ0

1η0
1 ,ξ0

2η0
2)

)
(40)

η0
1e
−ta1(ξ0

1η0
1 ,ξ0

2η0
2) = η0

1e
−ta1(ξ0

1η0
1 ,ξ0

2η0
2) (41)

η0
2e
−ta2(ξ0

1η0
1 ,ξ0

2η0
2) = i

(
ξ0
2e

ta2(ξ0
1η0

1 ,ξ0
2η0

2)
)

(42)
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if we choose t = 0 then from the above we can see that ξ0
1 and η0

1 are real and that

ξ0
2 = iη0

2. Using the fact that ξ0
1 ,η

0
1 ∈ R with (39) or (41) we can see that a1 must be

real. Using (40) or (42) and the fact that ξ0
2 = iη0

2 we can see that a2 is pure imaginary.

All periodic solutions have the initial conditions ξ0
1 = η0

1 = 0. If in addition we

choose ξ0
2 of the form ξ0

2 = reiϕ then for the solution to be real, from (40), we must have

ξ0
2 = iη0

2. In such case equation (34) gives us the periodic solutions as

ξ2(t) = ξ0
2e

ta2(0,ξ0
2η0

2) = reta2(0,ir2)+iϕ, (43)

η2(t) = η0
2e
−ta2(0,ξ0

2η0
2) = ire−ta2(0,ir2)−iϕ.

Lemma 13 shows that all periodic solutions of (32) which are real and lie close to

the equilibrium point, are given by the equation

l(r, t) = (0, reta2(0,ir2)+iϕ, 0, ire−ta2(0,ir2)−iϕ), (44)

when seen in the ξν , ην coordinates. Let us denote the set which contains these orbits

by

BR = {(0, reiϕ, 0, ire−iϕ)|ϕ ∈ [0, 2π), 0 ≤ r ≤ R}, (45)

where R is sufficiently small for the series a2(0, ir
2) to be convergent for r ≤ R.

Let P : R4 → R4 be the time 2π shift along the trajectory of (32) i.e.

P (q(t)) = q(t + 2π), (46)

where q(t) is a solution of (32).

Lemma 14 If in the series a2 from Theorem 10 i.e.

a2(ξ1η1, ξ2η2) = α2 + a2,1ξ1η1 + a2,2ξ2η2 + ... (47)

for the coefficient a2,2 ∈ R we have a2,2 6= 0, then for a sufficiently small R, the time 2π

shift along the trajectory P restricted to the set BR is an analytic twist map i.e.

P (r, ϕ) = (r, ϕ + f(r)) (48)

df

dr
6= 0.

Proof. In the ξ, η coordinates on BR from (44) we can see that the map P takes

form

P
(
0, reiϕ, 0, ire−iϕ

)
=

(
0, re2πa2(0,ir2)+iϕ, 0, ire−2πa2(0,ir2)−iϕ

)
.

Keeping in mind that a2 is pure imaginary we can see that P (r, ϕ) = (r, ϕ−i2πa2(0, ir
2)).

Since a2(0, ir
2) = α2 + a2,2ir

2 + O(r4) it is evident that if a2,2 6= 0, then for sufficiently

small r
d

dr

(
a2(0, ir

2)
) 6= 0. (49)
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Remark 15 Note that from Lemma 14 follows the twist property in action–angle

coordinates (I, ϕ) with I = r2/2. This observation will play a role when applying the

KAM Theorem 29. Observe also that in action-angle coordinates the map P has the

following form P (I, ϕ) = (I, ϕ + 2πim(α2) + a2,2I + O(I2)), which means that and the

twist is more uniform and does not converge to zero as I → 0, because ∂Pϕ

∂I
(I, ϕ) → 2πa22

for I → 0.

We will now show how to determine whether for a given problem (32) we have

a2,2 6= 0. For this we will quickly outline the construction of Moser [23] in order to

obtain a formula for a2,2. The construction is performed in the following two steps

C4 Ψ→ C4 Φ→ C4,

(ξ1, ξ2, η1, η2)
Ψ7→ (x1, x2, y1, y2)

Φ7→ (q1, q2, p1, p2),

where the transformation Φ changes the system (32) in the q1, q2, p1, p2 coordinates into

a system with a simplified form

ẋν = ανxν + fν(x, y)

ẏν = −ανyν + gν(x, y)
ν = 1, 2, (50)

where α1 and α2 are the eigenvalues of the equilibrium point and f and g are power

series starting from quadratic terms. From the simplified form (50) the transformation

Ψ determines the series from Theorem 10.

The transformation Φ is a linear function which changes the coordinates so that

the linear part of the equations (32) in the new coordinates becomes generated by a

diagonal matrix. Moreover, the transformation Φ should be canonical i.e.

ΦT JΦ = J (51)

where

J =

(
0 Id

−Id 0

)
and Id =

(
1 0

0 1

)
.

Moreover, Φ should satisfy the following reality condition [19, 23], which expresses the

fact that Jw is simply the map describing how the complex conjugation works in new

coordinates

JzΦ = ΦJw, (52)

where

Jz(q1, q2, p1, p2) = (q̄1, q̄2, p̄1, p̄2) (53)

Jw(x1, x2, y1, y2) = (x̄1, iȳ2, ȳ1, ix̄2).

The construction of the transformation Ψ is done by comparison of coefficients. We

look for

Ψ = (φ1(ξ, η), φ2(ξ, η), ψ1(ξ, η), ψ2(ξ, η)),
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with power series φν , ψν , av, ν = 1, 2 of the form

φν(ξ1, ξ2, η1, η2) =
∑2

k=1 δνkξk + h.o.t.

ψν(ξ1, ξ2, η1, η2) =
∑2

k=1 δνkηk + h.o.t.
(54)

such that

xν = φν(ξ1, ξ2, η1, η2) (55)

yν = ψν(ξ1, ξ2, η1, η2),

satisfy (50) if

ξ̇k = ak(ξ1η1, ξ2η2)ξk (56)

η̇k = −ak(ξ1η1, ξ2η2)ηk.

To construct φν , ψν , aν one can rewrite using (55) and (56) the equation (50) as

ẋν =
∑2

k=1

(
∂φν

∂ξk
akξk − ∂φν

∂ηk
akηk

)
= ανφν + fν(φ, ψ)

ẏν =
∑2

k=1

(
∂ψν

∂ξk
akξk − ∂ψν

∂ηk
akηk

)
= −ανψν + gν(φ, ψ),

ν = 1, 2. (57)

and compare the coefficients in (57). Let us denote by φν,N , ψν,N , aν,N the coefficients in

the series φν , ψν , aν which come from the homogenous polynomials of order N . We can

rewrite the part of (57) which contains all the terms of order N as

∑2
k=1 αk

(
ξk

∂
∂ξk

− ηk
∂

∂ηk

)
φν,N + . . . + δνkξkak,N−1 = ανφν,N + . . .

∑2
k=1 αk

(
ξk

∂
∂ξk

− ηk
∂

∂ηk

)
ψν,N + . . .− δνkηkak,N−1 = −ανψν,N + . . .

(58)

where the dots indicate all the terms which can be computed from φν,l, ψν,l, aν,l−1 with

l = 1, . . . , N − 1.

The nature of equations (58) suggests that the series can be constructed by

induction starting with the lowest terms. It turns out though that not all of the

coefficients can be computed from (58). This is because some of the terms in (58)

cancel each other out. If we consider a homogenous polynomial cξn1
1 ηm1

1 ξn2
2 ηm2

2 of order

N from φν,N , such term will cancel out in (58) if

2∑

k=1

αk

(
ξk

∂

∂ξk

− ηk
∂

∂ηk

)
cξn1

1 ηm1
1 ξn2

2 ηm2
2 − ανcξ

n1
1 ηm1

1 ξn2
2 ηm2

2 = 0.

This can happen only if we have

2∑

k=1

αk (nk −mk)− αν = 0. (59)

By the assumption of the Theorem 10 that for any t ∈ R we have tα1 + α2 6= 0, we can

see that (59) is true only for the terms of the form cξv (ξ1η1)
n1 (ξ2η2)

n2 . The value of the
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coefficient c corresponding to such terms is chosen from an appropriate normalization

condition [23]. In our case though the choice of the normalization does not play an

important role. We are interested in computation of the term a2,2 and this can be done

by induction starting with N = 1 and stopping at N = 3. For N = 1 all the terms are

uniquely determined. For N = 2 there are no terms which would cancel out in (58).

For N = 3 we can use the first equation from (58) to find a2,2. There the coefficient a2,2

stands together with ξ2 (ξ2η2) and the term for ξ2 (ξ2η2) in φν,3 will cancel out from the

equation. Therefore a2,2 is uniquely determined since it depends only on φν,1, ψν,1, φν,2

and ψν,2. Using this procedure we can obtain a direct formula for the term a2,2.

Lemma 16 If

fν(x1, x2, y1, y2) =
∑

i,j,k,l≥1 f ν
ijklx

i
1x

j
2y

k
1y

l
2

gν(x1, x2, y1, y2) =
∑

i,j,k,l≥1 gν
ijklx

i
1x

j
2y

k
1y

l
2

ν = 1, 2.

then

a2,2 =
1

α2

(−f 2
1,1,0,0f

1
0,1,0,1 − f 2

0,1,1,0g
1
0,1,0,1 + f 2

0,0,1,1g
1
0,2,0,0 − f 2

0,2,0,0f
2
0,1,0,1 (60)

+ 2g2
0,2,0,0f

2
0,0,0,2 + f 2

1,0,0,1f
1
0,2,0,0 − g2

0,1,0,1f
2
0,1,0,1) + f 2

0,2,0,1

Proof. The above can be checked from the formula (58) by direct computation.

This ends our construction of the coefficient a2,2.

Let us now briefly turn to the relation between the energy and the radius r of the

periodic orbits (44).

Lemma 17 For sufficiently small r the energy of the orbit lr (44) i.e.

h(r) = H(Φ (Ψ(lr))), (61)

is equal to

h(r) = H(0) +
1

2
D2H(0) (Φ(0, 1, 0, i)) r2 + o(r2), (62)

where D2H(0) (Φ(0, 1, 0, i)) denote the value of the quadratic form D2H(0) on the vector

Φ(0, 1, 0, i).

Proof. Since the problem (32) is autonomous the energy is constant along the

orbit lr. Without any loss of generality we can therefore assume that ϕ in equation (44)

for lr is zero and compute

h(r) = H(Φ (Ψ(l(r, 0)))).

Let us first note that the construction of Ψ = (φ1, φ2, ψ1, ψ2) produced power series of

the form (54), hence

Ψ(l(r, 0)) = (φ1, φ2, ψ1, ψ2)(l(r, 0)) = (0, r, 0, ir) + O(r2).

The transformation Φ is linear and therefore

Φ (Ψ(l(r, 0))) = rΦ(0, 1, 0, i) + O(r2). (63)
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We can compute h(r) as

h(r) = H(Φ (Ψ(l(r, 0)))) (64)

= H(0) + DH(0) (Φ (Ψ(l(r, 0))))

+
1

2
D2H(0) (Φ (Ψ(l(r, 0))))2 + o(|Φ (Ψ(l(r, 0)))|2).

Since zero is an equilibrium point we know that DH(0) = 0, thus by substituting (63)

into (64) we obtain our claim.

4. Twist in the PRC3BP at Lµ
2

As mentioned in Section 2, we have a family of periodic Lyapounov orbits lµ(C) around

Lµ
2 for energies larger than and sufficiently close to the energy Cµ

2 of the libration point

Lµ
2 . This family of orbits corresponds to the set BR (see (45)) of orbits constructed in

the previous section. In this section we will show that for sufficiently small µ we have

a twist property on this family of periodic orbits. The main idea for the proof is to

approximate the PRC3BP (with Hamiltonian (16)) expressed in Hill’ coordinates (15)

with the Hill’s problem (18). First we shall consider the Hill’s problem (18) where we

have explicit formulas for the libration point LHill
2 , the linearized vector field at LHill

2

its eigenvalues etc., which will allow us to compute the twist coefficient aHill
2,2 . We will

then show that the coefficients aµ
2,2 computed for the PRC3BP in Hill’s coordinates,

converges to aHill
2,2 as µ tends to zero.

Lemma 18 Let PHill be the time 2π shift along the trajectory Poincaré map of the Hill’s

problem (18). Then there exists a radius RHill ∈ R, such that the map PHill expressed

in in radius angle coordinates on the set of Lyapounov orbits around LHill
2

PHill : [0, RHill]× S1 → [0, RHill]× S1,

is a twist map.

Proof. We will apply the procedure from the previous section and compute aHill
2,2

for the equilibrium point LHill
2 = (3−1/3, 0, 0, 3−1/3). The linear terms of (18) in LHill

2 are

given by (20) with eigenvalues ±α1, ±α2, α1 =
√

1 + 2
√

7 and α2 =
√

1− 2
√

7. The

first of the two is real and the second is pure imaginary. We will choose the function

ΦHill composed of the eigenvectors of the eigenvalues ±α1 and ±α2

ΦHill =




λ1 β λ2 −iβ̄

−9λ1
1

α1(
√

7+4)
−β9 1

α2(
√

7−4)
9λ2

1

α1(
√

7+4)
−iβ̄9 1

α2(
√

7−4)

9λ1

√
7+3

α1(
√

7+4)
−β9

√
7−3

α2(
√

7−4)
−9λ2

√
7+3

α1(
√

7+4)
−iβ̄9

√
7−3

α2(
√

7−4)
−λ1

2
3+
√

7
β 2√

7−3
−λ2

2
3+
√

7
−iβ̄ 2√

7−3




, (65)
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with λ1, λ2 ∈ R, β ∈ C. The above transformation ΦHill satisfies the reality condition

(52), and if we choose the coefficients λ1, λ2, β as

λ1 = −λ2 =
1

6

√
α1

(√
7 + 4

)
√

7
, (66)

β =
1

6

√
iα2

(√
7− 4

)
√

7
,

then ΦHill is also canonical. Computing the power series fν and gν from Lemma 16

at LHill
2 and using (60) to compute the term aHill

2,2 , by rather laborious computations

(performed in Maple) one will obtain

aHill
2,2 =

3
√

9

224

(
102

√
7− 57

)
≈ 1. 976 7.

Since aHill
2,2 6= 0, by Lemma 14 we have the twist property in the radius angle coordinates

for all r such that 0 < r < RHill, where RHill is sufficiently small.

Remark 19 Let us stress that RHill is independent of µ. From our attempts of rigorous

estimation of RHill, following the estimates conducted during the proof of Theorem 10

in [23], we obtain that that RHill ≈ 10−4.

One can also apply the procedure outlined in Section 3 to compute the coefficient

aµ
2,2 for the PRC3BP with Hamiltonian (16) expressed in Hill’ coordinates (15). To

do so one needs to compute the libration point L̄µ
2 = µ−1/3 (Lµ

2 − (µ− 1, 0, 0, µ− 1)),

compute the expansion of the vector field at L̄µk
2 up to the order three, compute the

linear change of coordinates Φ = Φ(µ) and compute aµ
2,2 using Lemma 16. Numerical

results of such computations for a selection of parameters from the family {µk} from

Theorem 3 are given in the below table. The values µk chosen in the table are the

numerical approximations of the series (11) from [20].
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k µk aµk
2,2

2 0.4253863522E-2 1.967649155

3 0.6752539971E-3 1.968237635

4 0.2192936884E-3 1.970039000

10 0.92907436E-5 1.973971883

11 0.68212830E-5 1.974219993

12 0.51549632E-5 1.974426964

50 0.582146E-7 1.976164111

60 0.336890E-7 1.976252225

70 0.212152E-7 1.976315175

200 0.9096E-9 1.976563023

aHill
2,2 ≈ 1.9767

Table 1. The twist coefficient a2,2 for various masses µk.

Theorem 20 Let P µ denote the the time 2π shift along the trajectory P µ of the

PRC3BP in Hill’s coordinates (15). Then for sufficiently small µ the map P µ

expressed in in radius angle coordinates on the set of Lyapounov orbits around L̄µ
2 =

µ−1/3 (Lµ
2 − (µ− 1, 0, 0, µ− 1)) is an analytic twist map i.e. for r < RHill

P µ(r, ϕ) = (r, ϕ + f(r))

and
df

dr
6= 0 for all r ∈ [0, RHill].

Proof. We observe that L̄µ
2 depends analytically on µ1/3. First let us note that

since the operator Φ from our construction brings the derivative of the vector field to

the Jordan form, the operator Φµ
3Body for the PRC3BP can be chosen close (depending

analytically on µ1/3) to the operator ΦHill. The same can be said about the coefficients fν

and gν from Lemma 16, since those come from the Taylor expansion up to the third order

of the vector field at L̄µ
2 . Moreover, from the proof of the Lyapounov Moser Theorem 10

in [23], we know that the radius of convergence of the series from the Theorem 10 can

be chosen to be independent from µ, for µ sufficiently close to zero. This means that

the coefficient aµ
2,2 constructed for he PRC3BP will tend to the coefficient aHill

2,2 of the

Hill’s problem

lim
µ→0

aµ
2,2 = aHill

2,2 ≈ 1. 976 7. (67)
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Remark 21 From Theorem 20 and the results from Table 1, it is reasonable to believe

that we will have twist for all µk for k ≥ 2. Let us point out that in the Hill’s coordinates

the radius of convergence can be chosen to be independent from µ. In the original

coordinates of the PRC3BP though, since rHill = µ1/3r, this radius will depend and

decrease with µ as Rµ = µ1/3RHill. This means that in the original coordinates we will

have the twist property only for orbits with a radius smaller than µ1/3RHill.

5. Normal hyperbolicity, KAM theorem and the persistence of Lyapounov

orbits

In this Section we briefly recall some facts from the normal hyperbolicity theory and

a version of the K.A.M. (Kolmogorov, Arnold, Moser) Theorem. We then apply the

results to obtain the persistence result of a Cantor family of Lyapounov orbits around

Lµ
2 for the perturbation from PRC3BP to PRE3BP. Our approach closely follows the

method of [8]. We will therefore rewrite the theorems used in [8] and verify that their

assumptions are satisfied in our particular setting.

First let us recall the results concerning normal hyperbolicity.

Definition 22 ([8, A1]) Let M be a manifold in Rn and Φt a Cr, r ≥ 1 flow on it.

We say that a (smooth) manifold Λ ⊂ M – possibly with boundary – invariant under Φt

is α-β normally hyperbolic when there is a bundle decomposition

TM = TΛ⊕ Es ⊕ Eu,

invariant under the flow, and numbers C > 0, 0 < β < α, such that for x ∈ Λ

v ∈ Es
x ⇔ |DΦt(x)v| ≤ Ce−αt|v| ∀t > 0, (68)

v ∈ Eu
x ⇔ |DΦt(x)v| ≤ Ceαt|v| ∀t < 0, (69)

v ∈ TxΛ ⇔ |DΦt(x)v| ≤ Ceβ|t||v| ∀t. (70)

Theorem 23 ([8, A7]) Let Λ be a compact α-β normally hyperbolic manifold (possibly

with a boundary) for the Cr flow Φt, satisfying the Definition 22. Then there exists a

sufficiently small neighborhood U of Λ and a sufficiently small δ > 0 such that

(i) The manifold Λ is Cmin(r,r1−δ), where r1 = α/β.

(ii) For any x in Λ, the set

W s
x = {y ∈ U : dist(Φt(y), Φt(x)) ≤ Ce(−α+δ)t for t > 0}

= {y ∈ U : dist(Φt(y), Φt(x)) ≤ Ce(−β−δ)t for t > 0}
is a Cr manifold and TxW

s
x = Es

x.

(iii) The bundles Es
x are Cmin(r,r0−δ) in x, where r0 = (α− β)/β, and

W s
Λ = {y ∈ U : dist(Φt(y), Λ) ≤ Ce(−α+δ)t for t > 0}

= {y ∈ U : dist(Φt(y), Λ) ≤ Ce(−β−δ)t for t > 0}
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is a Cmin(r,r0−δ) manifold. Moreover TxW
s
Λ = Es

x. Finally

W s
Λ =

⋃
x∈Λ

W s
x .

Moreover, we can find a ρ > 0 sufficiently small and a Cmin(r,r0−δ) diffeomorphism

from the bundle of balls of radius ρ in Es
Λ to W s

Λ ∩ U.

Remark 24 An analogous theorem can be stated for W u
Λ by considering the flow Φ−t.

The following Theorem and two Remarks concern the persistence of the normally

hyperbolic manifold and its stable and unstable manifolds.

Theorem 25 ([8, A.14]) Let Λ ⊂ M (Λ not necessarily compact) be α-β normally

hyperbolic for the flow Φt generated by the vector field X, which is uniformly Cr in a

neighborhood U of Λ such that dist(M \ U, Λ) > 0. Let Ψt be the flow generated by

another vector field Y which is Cr and sufficiently C1 close to X. Then we can find a

manifold Γ which is α′-β′ normally hyperbolic for Y and Cmin(r,r1−δ) close to Λ, where

r1 = α/β.

The constants α′, β′ are arbitrarily close to α, β if Y is sufficiently C1 close to X.

The manifold Γ is the only Cmin(r,r1−δ) normally hyperbolic manifold C0 close to Λ

and locally invariant under the flow of Y.

The above Theorem is extended to give us a smooth dependence on the parameter

by the following two remarks.

Remark 26 (see [8, observation 1. page 390]) Assume that we have a family of

flows Φt,e, generated by vector fields Xe which are jointly Cr in all its variables (the

base point x and the parameter e). Let Λe be the normally hyperbolic manifold Γ from

Theorem 25 for the flow Φt,e. Then there exists a Cmin(r,r1−δ) mapping F : Λ× I → M,

where r1 = α/β and I ⊂ R is an interval containing zero, such that F (Λ, e) = Λe and

F (·, 0) is the identity.

Remark 27 (see [8, observation 2. page 390]) For a family of flows Φt,e with the

same assumptions as in Remark 26, there exists a Cmin(r,r1−δ) ( r1 = α/β ) mapping Rs :

W s
Λ × I → M such that Rs(W s

Λ, e) = W s
Λ,e, Rs(·, e)|Λ = F (·, e), Rs(W s

x , e) = W s
F (x,e),e.

An analogous mapping Ru also exists for W u
Λ .

Let us now turn to a quantitative version of the KAM Theorem used in [8]. Let us

recall that a real number ω is called a Diophantine number of exponent θ if there exists

a constant C > 0 such that ∣∣∣∣ω −
p

q

∣∣∣∣ ≥
C

qθ+1

for all p ∈ Z, q ∈ N.
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Definition 28 Let (M, ωM), (N,ωN) be two symplectic manifolds of same dimension.

If (M, ωM), (N, ωN) are exact symplectic (i.e. there exist one-forms αM , αN such that

ωM = dαM , ωN = dαN) then we say that a diffeomorphism

F : M → N

is exact symplectic when there exists a real valued function G on M such that

F ∗αN − αM = dG.

Theorem 29 (KAM Theorem [8, Theorem 4.8]) Let f : [0, 1] × T1 → [0, 1] × T1

be an exact symplectic C l map with l ≥ 6.

Assume that f = f0 + ef1, where e ∈ R,

f0 (I, ϕ) = (I, ϕ + A (I)) , (71)

A is C l,
∣∣dA

dI

∣∣ ≥ M , and ‖f1‖Cl ≤ 1.

Then, if e1/2M−1 = ρ is sufficiently small, for a set of Diophantine numbers σ of

exponent θ = 5/4, we can find invariant tori which are the graph of C l−3 functions uσ,

the motion on them is C l−3 conjugate to the rotation by σ and the tori cover the whole

annulus except a set of measure smaller than O
(
M−1e1/2

)
.

Moreover, we can find expansions

uσ = u0
σ + eu1

σ + rσ, (72)

with u0
σ = A−1(σ), ‖rσ‖Cl−4 ≤ O (e2) , and ‖u1

σ‖Cl−4 ≤ O(1).

All of the above results have been taken from [8]. Now we will apply them to the

setting of the PRE3BP. We will first show that the set of the Lyapounov orbits of the

PRC3BP is normally hyperbolic.

Let φe
t,s : R4 → R4 be given by

φe
t,s(x) = q(s + t),

where q(·) is the solution for the PRE3BP in Hill’s coordinates (15) (generated by the

Hamiltonian (16)), with an initial condition q(s) = x̄. We will define the flow on the

extended phase space Φe
t : R4 × R→ R4 × R as

Φe
t (x̄, s) = (φe

t,s(x̄), s + t). (73)

Observe that the flow Φe
t is 2π periodic with respect to s variable, hence may be

equivalently treated as a flow on R4 × S1. This will later give us uniform Cr estimates.

We shall use a notation

l(r) = l(r, S1)× S1

to denote a torus of all trajectories of Lyapounov orbits l(r, t) (see (44)) of radius r in

the extended phase space.
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Lemma 30 For a sufficiently small mass µ the set

Λ = {l(r)|r ∈ [0, RHill)}

of Lyapounov orbits of the PRC3BP (in the extended phase space) is α-β normally

hyperbolic, where α > 0 is close to the real eigenvalue α1 at the Libration point

L̄µ
2 = µ−1/3 (Lµ

2 − (µ− 1, 0, 0, µ− 1)) and β > 0 can be chosen arbitrarily close to zero.

Proof. Consider the ξ1, ξ2, η1, η2 coordinates from the previous section together

with a time t coordinate. The ξ1, η1 are the coordinates of the hyperbolic expansion and

ξ1, η1 are the coordinates of the twist rotation around the libration point L̄µ
2 . We have

M = {(ξ1, ξ2, η1, η2, t)|ξ1, η1 ∈ R, ξ2 = reiϕ, η2 = ire−iϕ,

r ∈ [0, RHill), ϕ ∈ [0, 2π), t ∈ [0, 2π)}.

We can define

Eu = {(ξ1, 0, 0, 0, 0)|ξ1 ∈ R},
Es = {(0, 0, η1, 0, 0)|η1 ∈ R},
TΛ = {(0, ξ2, 0, η2, t)|ξ2 = reiϕ, η2 = ire−iϕ, r ∈ R,ϕ ∈ [0, 2π), t ∈ [0, 2π)},

then we will have TM = Eu⊕Es⊕TΛ. The conditions (68) and (69) are satisfied with

a coefficient α > 0 close to the eigenvalue α1 at L̄µ
2 because the coordinates ξ1 and η1

are the coordinates of hyperbolic expansion and contraction. For sufficiently small µ

the eigenvalue α1 is close to αHill
1 =

√
1 + 2

√
7 ≈ 2. 508 3 of the Hill’s problem.

Let Φt be the flow in the extended phase space. From (44) for x = (0, ξ2, 0, η2, t) ∈ Λ

with ξ2 = reiϕ, η2 = ire−iϕ we have

‖DΦt(x)‖ ≤ 1 + r

∣∣∣∣
d

dr
a2(0, ir

2)

∣∣∣∣ t,

where a2 is the function given by (35) in Theorem 10. The growth of derivative of

DΦt(x) is at most linear in t. For any β > 0 there exists a constant C > 0, such that

for all v ∈ TxΛ and all t

|DΦt(x)v| ≤ Ceβ|t||v|. (74)

We will now define the time 2π shift along a trajectory Poincaré map and later

apply the KAM Theorem to it. By Lemma 30 for e = 0 we have an α-β normally

hyperbolic invariant manifold for Φ0
t of the form Λ = {l(r)|r ∈ [0, RHill)}. Let U be an

open neighborhood of Λ. We will define time 2π shift along a trajectory Poincaré map

P e
t0

: U ∩ {t = t0} → R4 as

P e
t0
(x) = φe

2π,t0
(x).

We are now ready to apply Theorems 25 and 29 to obtain the following persistence

result for the family of the Lyapounov orbits.
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Theorem 31 Let R < RHill be a fixed number and κ be the parameter from (25). If we

choose sufficiently small µ∗ > 0 then for all µ > 0 and e > 0 for which eµ−2/3 < κ the

normally hyperbolic manifold (with a boundary; considered in the extended phase space)

Λ = {l(r)|r ∈ [0, R)} of the PRC3BP persists under the perturbation to PRE3BP with

the parameter e, to a normally hyperbolic manifold (with a boundary) Λe. Moreover, for

any such e there exists a Cantor set C ⊂ [0, R] such that for any r ∈ C there exists an

invariant (two dimensional) torus

le(r) =
{
let0 (r) |t0 ∈ S1

}
,

where let0 (r) is an one–dimensional torus invariant under the map P e
t0
. The family of

tori le(r) for r ∈ C, covers Λe except a set of a measure smaller than O(
(
eµ−1/3

)1/2
).

Proof. The PRE3BP in Hill’s coordinates (15) is generated by the Hamiltonian H̄e

from (28). In the neighborhood U of Λ the r̄ from (17) and (28) is bounded, which means

that the PRE3BP is a uniform perturbation of the Hill’s problem (18). By Lemma 30

we know that Λ is normally hyperbolic for the PRC3BP. Applying Theorem 25 and

Remark 26 we obtain a family of normally hyperbolic manifolds Λe locally invariant

under Φe
t , and a function F : Λ× [0, e0(µ)] → R4 × S1 such that

F (Λ, e) = Λe = {(Λt,e, t) |Λt,e ⊂ R4, t ∈ S1}.

From the Implicit Function Theorem we know that the libration point L̄µ
2 continues

for small values of e to a 2π periodic orbit L̄µ,e
2 (t). We can modify F so that

F (L̄µ
2 , t, e) = L̄µ,e

2 (t). By Remark 26 the function F is Cr1 , where r1 = α/β. From the

proof of Lemma 30 we know that for sufficiently small µ we have α ≈
√

1 + 2
√

7 and

that β > 0 can be chosen to be arbitrarily close to zero. This means that for sufficiently

small µ, the function F is Ck for any given k > 0. Since Λe is locally invariant under Φe
t

and the flow is 2π periodic, for any t0 ∈ S1 the manifold Λt0,e is locally invariant under

P e
t0
.

Let us fix t0 = 0, fix small µ > 0 and fix a Poincaré map P e := P e
t0=0 (here we

could consider a map P e
t0

for any t0 ∈ S1, but we fix t0 = 0 for simplicity) and consider

e such that eµ−2/3 < κ, which ensures that (28) is valid. We shall use a notation

BR = π{t=0}{l(r)|r ≤ R} for the set of Lyapounov orbits with radius smaller or equal

to R. We will now show that for sufficiently small eµ−1/3 the Poincaré map

P e : F (BR, 0, e) → Λ0,e (75)

is properly defined and symplectic. By (28), for sufficiently small eµ−1/3 we can see that

(75) is properly defined because Λ0,e is locally invariant. The map P e is a restriction

to Λ0,e of a time 2π shift along a trajectory of a Hamiltonian system. Such shift is

symplectic for the standard form ω = dx̄ ∧ dp̄x + dȳ ∧ dp̄y (here we use notation

x̄ = (x̄, ȳ, p̄x, p̄y) for coordinates since we are working in Hill’s coordinates (15)). In

order to show that P e is symplectic it is therefore sufficient to show that ω is non
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degenerate on Λ0,e. For sufficiently small µ and e the manifold Λ0,e is arbitrarily close

to the manifold of the Lyapounov orbits of the Hill’s problem (18), which in turn,

for r sufficiently close to zero, is arbitrarily close to the vector space V given by the

eigenvectors of the pure complex eigenvalues ±αHill
2 = ±

√
1− 2

√
7. To show that ω

is not degenerate on Λ0,e it is therefore sufficient to show that ω is not degenerate

on V. The eigenvectors corresponding to ±αHill
2 are v and −iv̄, where v is the second

column in ΦHill (see (65)), which was symplectic, therefore ω(v,−iv̄) = 1. The space

V is spanned by x1 and x2, where v = x1 + ix2. An easy computation shows that

1 = ω(v,−iv̄) = −2ω(x1, x2), which means that ω is not degenerate on V .

Now we will use the KAM Theorem 29 to show that most of the Lyapounov orbits

on Λ0,e survive under a sufficiently small perturbation. Let us first note that even though

the Theorem is stated for a map f on [0, 1]× T1, the KAM result is local by its nature

and also holds for a map f : [0, 1] × T1 → R × T1, as will be the case in our setting.

Let ω denote the standard symplectic form in R4 i.e. ω = dx̄ ∧ dp̄x + dȳ ∧ dp̄y. Let ωe

denote the induced form on Λ0,e. There exist Cr1−2 (jointly with the parameter e) close

to identity coordinate maps ce : Λ0,e → Λ0,0 which transport the symplectic forms ωe

into the standard one (see [8, page 367]). The map

P̄ e := ce ◦ P e ◦ (ce)
−1 : BR → BRHill

is properly defined for sufficiently small e. Clearly for e = 0 we have P̄ 0 = P 0. From

the fact that P e is symplectic and the fact that P 0 = P e=0
t0=0 is a twist map follow the

same properties for our maps P̄ e and P̄ 0 respectively. Now we pass to the action angle

coordinates. From Lemma 14 we have that P̄ 0 has the form (71). Exact simplecticity of

P̄ e is a direct consequence of simplecticity combined with invariance of the origin. To

apply the KAM Theorem 29 what is now left is to show that

∥∥P̄ e − P̄ 0
∥∥

Cr1−2 = O(eµ−1/3). (76)

This comes from the fact that in the neighborhood of L̄µ
2 the perturbing term in (28)

is uniformly O(eµ−1/3) in the C l norm. Observe that this estimate holds both in the

original coordinates and in the action angle coordinates, because the origin is the fixed

point for P̄ e. Therefore the time 2π shift maps P e
t0

and P 0
t0

are also O(eµ−1/3) close,

from which (76) follows. This gives us a Cantor family of invariant tori le0 (r) for r ∈ C.

Now for r ∈ C we can define

le(r) := {Φe
t (x, 0)|x ∈ le0(r), t ∈ [0, 2π)}

let0(r) := Φe
t0
(le0 (r) , 0).

The fact that the complement of the Cantor set C is O(
(
eµ−1/3

)1/2
) follows from

the KAM Theorem (see also [24] for more details).

In the above argument we require that eµ−1/3 < c with some sufficiently small c

(which is independent of µ) so that both the normally hyperbolic theorem and KAM

can be applied. Let finish by observing that for any given c, by choosing sufficiently
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small µ∗ > 0 and requiring that µ < µ∗ and eµ−2/3 < κ the estimate eµ−1/3 < c follows.

Remark 32 An identical argument to the above proof can be performed to obtain a

mirror result to Theorem 31 for any fixed parameter µk. To do so though one would

have to verify the twist condition. This has been verified numerically for a sequence of

parameters in Table 1. It is visible that as the masses µk decrease the twist coefficient

increases to infinity. It is therefore reasonable to believe that the twist condition holds

for all parameters µk. Let us emphasize that for sufficiently large k we have rigorously

verified the twist condition in Lemma 20, hence the claim of Theorem 31 holds for µk

sufficiently large k.

Remark 33 We can set R from Theorem 31 to be the radius of one of the surviving

tori. This will ensure that Λe is an invariant manifold with a boundary le(R). We should

also emphasize that the choice of R is independent of µ.

If for two surviving tori le(r1) and le(r2) with r1 < r2 there does not exist an

r ∈ (r1, r2) for which the torus l(r) is perturbed to an invariant torus of the PRE3BP,

then we say that there exists a gap between the tori le(r1) and le(r2).

Proposition 34 Let eµ−1/3 be sufficiently small so that the claim of Theorem 31 holds.

Then there exists an interval I ⊂ [0, R] with measure of order
(
eµ−1/3

)1/2
, for which the

set I ∩ C for which Lyapounov orbits persist under perturbation has gaps smaller than

ζeµ−1/3, where ζ > 0 is any given constant.

Proof. The fact that such an interval exists will follow from the fact that the

complement of the Cantor set C is of the measure O(
(
eµ−1/3

)1/2
). Let us divide the

interval [0, R] into n equal parts. If on every interval the set C contains gaps larger than

ζeµ−1/3, then from the fact that the measure of the complement of C is O(
(
eµ−1/3

)1/2
)

(let us say that this O(
(
eµ−1/3

)1/2
) is equal to M

(
eµ−1/3

)1/2
for some M > 0) the

number of such intervals n must satisfy

nζeµ−1/3 ≤ M
(
eµ−1/3

)1/2
,

which means that n ≤ 1
ζ
M

(
eµ−1/3

)−1/2
. If we divide the interval [0, R] into a slightly

larger number ñ of equal intervals then at least one of them (this will be our interval I)

cannot contain a gap larger than ζeµ−1/3. The size of such an interval is equal to

R

ñ
≈ 1

M
Rζ

(
eµ−1/3

)1/2
.
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6. Melnikov method

In the previous section we have shown that the normally hyperbolic manifold with

a boundary Λ = {l(r) : r ∈ [0, R]} (considered in the extended phase space) of the

PRC3BP (28) in Hill’s coordinates (16) persists under perturbation to Λe which

is a normally hyperbolic invariant manifold with a boundary of the PRE3BP with

eccentricity e. Moreover, we have shown that Λe contains a Cantor set of two dimensional

invariant KAM tori. In this section we will consider the problem of intersections of the

stable and unstable manifolds of such tori.

In this section we shall once again work in the Hill’s coordinates (15) and

Hamiltonian (26). It will also be convenient for us to parameterize the manifolds Λ

and Λe using the radius angle coordinates r, ϕ of the Lyapounov orbits from Section

3 together with time t ∈ S1. For e = 0 we thus use a natural parameterization of

the Lyapounov orbits by their Birkhoff normal form coordinates (coordinates obtained

from Theorem 10). After the perturbation it will be enough for us to use the fact that

the parametrization is smooth (in fact, from the proof of Theorem 31 we know that it

will be Cr1 with r1 = α/β) and that we can parametrize (see proof of Theorem 31) the

perturbed libration point L̄µ
2 = µ−1/3 (Lµ

2 − (µ− 1, 0, 0, µ− 1)) (which continues to a 2π

periodic orbit) by r = 0. We can not assume though that the surviving perturbed KAM

tori are parameterized by r. Our parametrization simply follows from the Normally

Hyperbolic Invariant Manifold Theorem (see Theorem 25 and Remarks 26, 27) without

involving the KAM Theorem.

Let us recall that for µ close to µk from Theorem 3 prior to the perturbation the

fibres W s
p for p ∈ Λ intersect transversally with the section {ȳ = 0} (see Section 2,

Theorems 3, 4 and also [20]). The same goes for the unstable fibers W u
p . This means

that for sufficiently small 0 < e the same will hold for the stable fibres W s,e
p and unstable

fibres W u,e
p of points p ∈ Λe. Each point p ∈ Λe can be parameterized by µ, r, ϕ and

t0. The fibres of such points W u,e
p , W s,e

p are one dimensional and contained in sections

Σt0 = {(q, t0)|q ∈ R4}. The intersections of W u,e
p and of W s,e

p with {ȳ = 0} are functions

of (µ, r, ϕ, t0, e). For a point p ∈ Λe parameterized by µ, r, ϕ and t0 we introduce the

following notation for the first intersections of W s,e
p and of W u,e

p with {ȳ = 0}

(ps(r, ϕ, t0, e), t0) = W s,e
p ∩ {y = 0},

(pu(r, ϕ, t0, e), t0) = W u,e
p ∩ {y = 0}.

Let qs(r, ϕ, t0, e, t) and qu(r, ϕ, t0, e, t) be the orbits (considered in the standard (not

extended) phase space) of the PRE3BP, which start from the points ps(r, ϕ, t0, e) and

pu(r, ϕ, t0, e) respectively at time t = t0 i.e.

qs(r, ϕ, t0, e, t0) = ps(r, ϕ, t0, e),

qu(r, ϕ, t0, e, t0) = pu(r, ϕ, t0, e).

(ps, pu, qs, qu depend on the choice of µ, but we omit this in our notations for simplicity).
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Let us note that for parameters µ = µk from Theorem 3

qs(0, ϕ, t0, 0, t) = qu(0, ϕ, t0, 0, t) (77)

= q̄0
µk

(t− t0)

= µ−1/3
(
q0
µk

(t− t0)− (µk − 1, 0, 0, µk − 1)
)
,

where q0
µk

(t) is the homoclinic orbit to Lµk
2 in the PRC3BP defined just after the

statement of Theorem 3. Let us remind the reader that q0
µk

(0) ∈ {y = 0}.
Lemma 35 For fixed µ and i ∈ {s, u}

qi(r, ϕ, t0, 0, t0) = qi(0, ϕ, t0, 0, t0) + O(r), (78)

qi(r, ϕ, t0, e, t0) = qi(r, ϕ, t0, 0, t0) + e
∂qi

∂e
(r, ϕ, t0, 0, t0) + o(e), (79)

∂qi

∂e
(r, ϕ, t0, 0, t0) =

∂qi

∂e
(0, ϕ, t0, 0, t0) + O(r), (80)

where the bounds o(e) and O(r) are independent from t0.

In addition for f, g from (29)

d

dt

(
∂qi

∂e
(0, ϕ, t0, 0, t)

)
= Df

(
µ, qi(0, ϕ, t0, 0, t)

) ∂qi

∂e
(0, ϕ, t0, 0, t) (81)

+ g
(
qi(0, ϕ, t0, 0, t), t

)
,

and ∂qi

∂e
(0, ϕ, t0, 0, t) is bounded for all t ∈ [t0, +∞) for i = s (or t ∈ (−∞, t0] for i = u).

Proof. The normally hyperbolic manifold and the foliation of its stable and

unstable manifolds behave smoothly under perturbation and equations (78–80) are a

simple consequence of this.

It remains to prove (81). Let i = s. We have

d

dt

(
∂qs

∂e
(0, ϕ, t0, 0, t)

)
=

∂

∂e

d

dt
qs(0, ϕ, t0, 0, t)

=
∂

∂e

(
f (µ, qs(0, ϕ, t0, e, t)) + eg (qs(0, ϕ, t0, e, t), t) + O(

(
eµ−1/3

)2
)
)
|e=0

= Df (µ, qs(0, ϕ, t0, 0, t))
∂qs

∂e
(0, ϕ, t0, 0, t) + g (qs(0, ϕ, t0, 0, t)) .

The points ps(0, ϕ, t0, e) lie on stable fibres of the periodic orbit perturbed from Lµ
2 .

The points ps(0, ϕ, t0, e) and ps(0, ϕ, t0, 0) are therefore O(e) close. Also the periodic

orbit perturbed from Lµ
2 lies O(e) close to Lµ

2 . Since orbits qs(0, ϕ, t0, e, t) start from

ps(0, ϕ, t0, e) this gives us

|qs(0, ϕ, t0, e, t)− qs(0, ϕ, t0, 0, t)| = O(e) (82)
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for t ∈ [t0, +∞). This means that

∣∣∣∣
∂qs

∂e
(0, ϕ, t0, 0, t)

∣∣∣∣ =

∣∣∣∣lime→0

qs(0, ϕ, t0, e, t)− qs(0, ϕ, t0, 0, t)

e

∣∣∣∣

is bounded.

For i = u the argument is analogous.

Remark 36 Let us note that the bound O(r) in (78) is independent of µ.

Proof. This follows from formulas for the parameterization of the intersection of

the manifolds with {y = 0} from Theorem 4. Each curve from Theorem 4 gives an

intersection of an unstable manifold of a Lyapounov orbit. A point qi(r, ϕ, t0, 0, t0) is a

point of intersection of the unstable manifold of a Lyapounov orbit l(r) with {y = 0},
and in x, ẋ coordinates is represented by a point

(
x(σ,

√
∆C), ẋ(σ,

√
∆C)

)
on a curve

from Theorem 4, for some σ ∈ S1 and ∆C > 0. The point qi(0, ϕ, t0, 0, t0) is the point of

intersection of the homoclinic orbit to Lµk
2 with {y = 0} and in x, ẋ coordinates is given

by (x(σ, 0), ẋ(σ, 0)) (where the choice of σ plays no role since for ∆C = 0 equations

from Theorem 4 give a single point).

From Theorem 4

x(σ,
√

∆C)− x(σ, 0) = O(
√

∆C) and ẋ(σ,
√

∆C)− ẋ(σ, 0) = O(
√

∆C). (83)

By (16) and Lemma 17

√
∆C =

√
H(µ, µ1/3l(r) + (µ− 1, 0, 0, µ− 1))−H(µ, Lµ

2 )

=
√

µ2/3H̄(µ, l(r))− µ2/3H̄(µ, l(0))

= µ1/3O(r). (84)

The points x(σ,
√

∆C), x(σ, 0), ẋ(σ,
√

∆C), ẋ(σ, 0) are considered in original coordinates

of the system on the section {y = 0}. For a point (x, ẋ) =
(
x(σ,

√
∆C), ẋ(σ,

√
∆C)

)
on

the section {y = 0} by (3) we have px = ẋ− y = ẋ and

py =
√

2 (H(Lµk
2 ) + ∆C + Ω(x, 0))− p2

x =
√

2H(Lµk
2 ) + µ1/3O(r).

Recall that the points qi(r, ϕ, t0, 0, t0), qi(0, ϕ, t0, 0, t0) are given in Hill’s coordinates

(15). By (15), (83), (84)

∣∣qi(r, ϕ, t0, 0, t0)− qi(0, ϕ, t0, 0, t0)
∣∣

= µ−1/3
∣∣∣(x, 0, px, py) (σ,

√
∆C)− (x, 0, px, py) (σ, 0)

∣∣∣ = O(r).
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Remark 37 We believe that with techniques similar to the ones used for the proof of

Theorem 4 in [20], but involving additionally terms coming from the perturbation from

the PRC3BP to the PRE3BP, it should be possible to prove that the terms o(e) and

O(r) from (79), (80) can be chosen independently of µk. Such statement requires a

detailed proof which is rather technical. We skip this intentionally since in later parts

of our argument it will turn out that even if this had been done by us, we still cannot

obtain uniform bounds for the radius of set on which we have structural stability for

the PRE3BP. This is due to the fact that we have not obtained uniform bounds for the

Melnikov integral (85) (see Remark 40). Such bounds seem even harder to obtain than

proving that the terms o(e) and O(r) from (79), (80) are independent of µk.

Remark 36 will allow us though to extract some information as to the radius for

which we shall have structural stability for the PRE3BP. It will turn out that this radius

needs to converge to zero with µk going to zero at least fast enough so that µ
−1/3
k R(µk)

is bounded. From our proof though it is not transparent how small exactly it shall need

to be chosen.

We now have the following lemma regarding the energy of the points ps(r, ϕ, t0, e)

and pu(r, ϕ, t0, e).

Lemma 38 Assume that µ is one of the parameters µk for which a homoclinic orbit

q̄0
µk

(t) = µ−1/3
(
q0
µk

(t)− (µk − 1, 0, 0, µk − 1)
)

to L̄µ
2 = µ−1/3 (Lµ

2 − (µk − 1, 0, 0, µk − 1))

exists (See Theorem 3). For any two points p1, p2 ∈ Λe with coordinates (r1, ϕ1, t0) and

(r2, ϕ2, t0) respectively, we have

H̄(µk, p
s(r1, ϕ1, t0, e))− H̄(µk, p

u(r2, ϕ2, t0, e))

= H̄(µk, l(r1))− H̄(µk, l(r2)) + eMµk
(t0)

+ O(e max {|r1|, |r2|}) + o(e),

where

Mµk
(t0) =

∫ +∞

−∞
{H̄, Ḡ}(µk, q̄

0
µk

(t− t0), t)dt. (85)

Proof. Let · denote the scalar product and let ∆s and ∆u denote the following

functions

∆s(t, t0) := ∇H̄(µk, q̄
0
µk

(t− t0)) · ∂qs

∂e
(0, ϕ1, t0, 0, t)

∆u(t, t0) := ∇H̄(µk, q̄
0
µk

(t− t0)) · ∂qu

∂e
(0, ϕ2, t0, 0, t).

Using the facts that H̄ = H̄r = H̄(µk, l(r)) is constant along the solutions qs(r, ϕ, t0, 0, t)
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of the PRC3BP, from (79) and (77) we can compute

H̄(µk, q
s(r1, ϕ1, t0, e, t0))

=H̄(µk, q
s(r1, ϕ1, t0, 0, t0))

+ e∇H̄(µk, q
s(r1, ϕ1, t0, 0, t0)) · ∂qs

∂e
(r1, ϕ1, t0, 0, t0) + o(e)

=H̄r1 + e∇H̄(µk, q̄
0
µk

(0) + O(r1)) ·
(

∂qs

∂e
(0, ϕ1, t0, 0, t0) + O(r1)

)
+ o(e)

=H̄r1 + e∇H̄(µk, q̄
0
µk

(0)) · ∂qs

∂e
(0, ϕ1, t0, 0, t0) + O(er1) + o(e)

=H̄r1 + e∆s(t0, t0) + O(er1) + o(e), (86)

and similarly one can show that

H̄(µk, q
u(r2, ϕ2, t0, e, t0)) = H̄r2 + e∆u(t0, t0) + O(er2) + o(e). (87)

Let us stress that, by Lemma 35 we know that O(er1), O(er2) and o(e) are uniform with

respect to t0.

Let us investigate the evolution of ∆s(t, t0) and ∆u(t, t0) in time. Let us concentrate

on the term ∆s(t, t0). Using (81), (77) and ∇H̄ = −Jf (see (30)) we can compute

− d

dt
(∆s(t, t0)) =

(
JDf(µk, q̄

0
µk

(t− t0))
d

dt
q̄0
µk

(t− t0)

)
· ∂qs

∂e
(0, ϕ1, t0, 0, t)

+
(
Jf(µk, q̄

0
µk

(t− t0))
) · d

dt

∂qs

∂e
(0, ϕ1, t0, 0, t) (88)

=
(
JDf(µk, q̄

0
µk

(t− t0))f(µk, q̄
0
µk

(t− t0))
) · ∂qs

∂e
(0, ϕ1, t0, 0, t)

+
(
Jf(µk, q̄

0
µk

(t− t0))
) ·

(
Df

(
µk, q̄

0
µk

(t− t0)
) ∂qs

∂e
(0, ϕ1, t0, 0, t)

)

+
(
Jf(µk, q̄

0
µk

(t− t0))
) · g(µk, q̄

0
µk

(t− t0), t)

=
(
Jf(µk, q̄

0
µk

(t− t0))
) · g(µk, q̄

0
µk

(t− t0), t)

= −{H̄, Ḡ}(µk, q̄
0
µk

(t− t0), t),

where the third equality comes from the fact that for any p, q ∈ R4

(
JDf(µk, q̄

0
µk

(t− t0))p
) · q + (Jp) · (Df

(
µk, q̄

0
µk

(t− t0)
)
q
)

= 0, (89)

with p = f(µk, q̄
0
µk

(t− t0)) and q = ∂qs

∂e
(0, ϕ1, t0, 0, t). Equation (89) follows from the fact

that ω(p, q) = Jp · q is the standard symplectic form which is invariant under the flow

φ(t, x) of (16) i.e.

ω

(
∂

∂x
φ(t, x)p,

∂

∂x
φ(t, x)q

)
= ω(p, q), (90)

hence by differentiating (90) with respect to t and setting t = 0 we obtain (89).



Transition Tori in the Planar Restricted Elliptic Three Body Problem 33

We can now compute ∆s(t0, t0) using (88)

∆s(+∞, t0)−∆s(t0, t0) =

∫ +∞

t0

{H̄, Ḡ}(µk, q̄
0
µk

(t− t0), t)dt.

Since limt→+∞ q̄0
µk

(t− t0) = L̄µk
2 at geometric rate and f(µk, L̄

µk
2 ) = 0, from the fact that

∂qs

∂e
(0, ϕ1, t0, 0, t) is bounded on [t0, +∞) we have

∆s(+∞, t0) = lim
t→+∞

Jf(µk, q̄
0
µk

(t− t0)) · ∂qs

∂e
(0, ϕ1, t0, 0, t) = 0

and therefore

−∆s(t0, t0) =

∫ +∞

t0

{H̄, Ḡ}(µk, q̄
0
µk

(t− t0), t)dt, (91)

and ∆ is uniformly with respect to t0 absolutely convergent.

Analogous computations give

∆u(t0, t0) =

∫ t0

−∞
{H̄, Ḡ}(q̄0

µk
(t− t0), t)dt. (92)

From (86), (87), (91) and (92) we obtain our claim.

Theorem 39 Consider the PRE3BP with a sufficiently small parameter µ = µk for

which a homoclinic orbit to Lµk
2 exists (See Theorem 3 ). Assume that

Mµk
(t0) =

∫ +∞

−∞
{H̄, Ḡ}(µk, q̄

0
µk

(t− t0), t)dt (93)

has simple zeros. Let R(µk) ∈ R, be such that 0 < R(µk) and µ
−1/3
k R(µk) is

sufficiently close to zero. Then for any R ∈ (0, R(µk)) there exists an e0(R) such

that for all eµ
−1/3
k ∈ [0, min(e0(R), κµ

1/3
k )] (where κ is the constant from (25 )) and all

r ∈ C ∩ [R,R(µk)] for which l(r) is perturbed to an invariant torus le (t)

le(r) = {(let0(r), t0)|t0 ∈ S1}

the manifolds W s
le(r) and W u

le(r) (considered in the extended phase space) intersect

transversally.

Proof. We consider the PRE3BP (29) in Hill’s coordinates (15). In [20] it has

been shown (see also Theorem 4 in Section 2.1) that for the unperturbed PRC3BP

W s
l(r) intersects transversally with W u

l(r) at {ȳ = 0}. Let Σt0 = R4 × {t0} be the time t0
section in the extended phase space. Let v0(t0) denote some point for which

v0(t0) ∈ W s
l(r) ∩W u

l(r) ∩ {ȳ = 0} ∩ Σt0 . (94)

There can be more than just one such point (see Figures 3, 4), namely, if we consider

πx,px(W
u
l(r) ∩ Σt0 ∩ {ȳ = 0}) and πx̄,p̄x(W

s
l(r) ∩ Σt0 ∩ {y = 0}) then the two sets

are homeomorphic to two circles, which intersect transversally at least one point
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Figure 4. The manifolds W s
l(r), Wu

l(r), W s
le(r) and Wu

le(r) for r > R, intersected with
Σt0 and {y = 0}, and projected onto the x, px coordinates.

(x̄ = x̄0, p̄x = 0) (see Theorem 4). Fixing any one of such points of intersection will be

sufficient for our proof. From the construction we have πx,y,px,t(v
0(t0)) = (x̄0, 0, 0, t0).

The extended phase space of the PRC3BP is five dimensional. We can choose the

energy H̄ to be the remaining fifth coordinate in the neighborhood of v0(t0). In these

coordinates

v0(t0) =
(
x̄ = x̄0, ȳ = 0, p̄x = 0, H̄ = H̄(µk, l(r)), t = t0

)
.

Now we perturb from the PRC3BP to the PRE3BP. Consider sufficiently small µk

and perturbation e satisfying eµ
−2/3
k < κ so that by Theorem 31 we have a Cantor set C

of KAM tori le(r)L̇et us consider some small R(µk) ∈ R (the size of R(µk) needs to be

chosen small compared with Mµk
(t). This is discussed later on in our argument). Let

0 < R < R(µk) and r ∈ C ∩ [R, R(µk)]. Consider now the following sets

πx̄,p̄x

(
W u

le(r) ∩ Σt0 ∩ {ȳ = 0}) and πx̄,p̄x

(
W s

le(r) ∩ Σt0 ∩ {ȳ = 0}) .

For sufficiently small e these sets remain homeomorphic to circles. For e = 0 the

curves intersect transversally at an angle O(µ
1/3
k ) (see Remark 7). This means that

by choosing eµ−1/3 > 0 sufficiently small the curves shall intersect at some point

(x̄ = x̄0(t0, e), p̄x = p̄0
x(t0, e)) which is close to (x0, 0). The choice of eµ−1/3 also

depends on R, since in order to ensure that the curves intersect we assume that

their radius is greater than R. Hence we have e0(R) in the formulation of our

theorem. For the PRE3BP the energy H̄ is no longer preserved. This means that

the intersection of the circles on the x̄, p̄x plane does not imply an intersection in the

extended phase space. Namely we have two points vs(t0, e) ∈ W s
le(r) ∩Σt0 ∩{ȳ = 0} and

vu(t0, e) ∈ W u
le(r) ∩Σt0 ∩ {ȳ = 0} which may differ on the energy coordinate (see Figure

5)

vs(t0, e) =
(
x̄0(t0, e), 0, p̄

0
x(t0, e), h

s(t0, e), t0
)

(95)

vu(t0, e) =
(
x̄0(t0, e), 0, p̄

0
x(t0, e), h

u(t0, e), t0
)
.

We will show that assumptions of our theorem imply that for some t0 the points vs(t0, e)

and vu(t0, e) coincide. This will imply intersection between W s
le(r) and W u

le(r). Later we

will also show that such intersection is transversal.



Transition Tori in the Planar Restricted Elliptic Three Body Problem 35

The points vs(t0, e) and vu(t0, e) are both contained in {ȳ = 0}. Moreover

vs(t0, e) ∈ W s
le(r) ∩ Σt0 = W s

let0
(r) and vu(t0, e) ∈ W u

le(r) ∩ Σt0 = W u
let0

(r). This means

that there exist rs, ϕs and ru, ϕu (these depend on t0 and e but we omit this in our

notations for simplicity) such that

vs(t0, e) = (ps(rs, ϕs, t0, e), t0) (96)

vu(t0, e) = (pu(ru, ϕu, t0, e), t0).

In the proof of Theorem 31 let0(r) is constructed from continuation along trajectories of

a KAM torus le0(r). Therefore from (72) in KAM Theorem 29 we have that

rs = r + O(eµ−1/3), (97)

ru = r + O(eµ−1/3),

and the bound O(eµ−1/3) is uniform for all r ∈ C. Applying Lemma 38 we have that

hu(t0, e)− hs(t0, e) = H̄(µk, p
s(rs, ϕs, t0, e))− H̄(µk, p

u(ru, ϕu, t0, e)) (98)

= H̄(µk, l(r
s))− H̄(µk, l(r

u)) + eMµk
(t0) + O(eR(µk)) + o(e).

The Hamiltonian in coordinates (q, p) = (q1, q2, p1, p2) = (x̄, ȳ, p̄x, p̄y)− L̄µk
2 centered in

L̄µk
2 is

H (p, q) := H̄
(
µk, (q, p) + L̄µk

2

)
.

By Lemma 17 we hence know that

H̄(µk, l(r)) = H̄(µk, L̄
µk
2 ) +

1

2
D2H(0) (Φ(0, 1, 0, i)) r2 + o(r2)

hence from (97) and (98) we have

hu(t0, e)− hs(t0, e) = O(reµ−1/3) + eMµk
(t0) + O(eR(µk)) + o(e) (99)

= eMµk
(t0) + O(eµ−1/3R(µk)) + o(e).

Setting first R(µk) sufficiently small (so that µ
−1/3
k R(µk) is small in comparison to

Mµk
(t)) and then reducing e sufficiently close to zero implies that since Mµk

(t0) has

simple zeros, for some parameters t0 (close to these zeros) we will have hu(t0, e) −
hs(t0, e) = 0, which implies that vs(t0, e) = vu(t0, e) and in turn ensures that

W s
le(r) ∩W u

le(r) 6= ∅.

Now we will show that this intersection is transversal. First note that from the

analyticity of the functions vs(t0, e) and vu(t0, e) using the same argument as in the

proof of Lemma 38 we also have that

∂

∂t
(hu(t0, e)− hs(t0, e)) = e

∂

∂t
Mµk

(t) + O(eµ
−1/3
k R(µk)) + o(e). (100)
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We know that prior to our perturbation W s
l(r) and W u

l(r) intersect transversally at v0(t0)

(94). This intersection is not transversal in the full extended phase space, it is only

transversal in the constant energy manifold

M = {(x̄, ȳ, p̄x, H̄, t)|H̄ = H̄(µk, l(r))} ⊂ R3 × {H̄(µk, l(r))} × S1.

To be more precise, we know that v0(t0) ∈ W s
l0t0

(r)
∩W u

l0t0
(r)

, that W s
l0t0

(r)
, W u

l0t0
(r)
⊂ Σt0

and that [20]

Tv0(t0)(W
s
l0t0

(r)) + Tv0(t0)(W
u
l0t0

(r)) = R3 × {0} × {0}.
These properties are preserved under small perturbation e > 0, hence for vs(t0, e) =

vu(t0, e) =: v(t0, e) we have

Tv(t0,e)(W
s
let0

(r)) + Tv(t0,e)(W
u
let0

(r)) = R3 × {0} × {0}.

We need to show that we also have transversality on the t0 and energy coordinate. For

a fixed e the curves vs(t, e) and vu(t, e) belong to W s
le(r) and W u

le(r) respectively. At the

time t = t0 for which vs(t0, e) = vu(t0, e) = v(t0, e) we have M ′
µk

(t0) 6= 0. This means

that using (100), for sufficiently small e,

∂

∂t
(πH(vs(t, e))− πH(vu(t, e))) |t=t0 =

∂

∂t
(hu(t, e)− hs(t, e)) |t=t0

= eM ′
µk

(t0) + O(eµ
−1/3
k R(µk)) + o(e)

6= 0.

We also have for i ∈ {u, s}, ∂
∂t

(πt0v
i(t, e)) = ∂

∂t
t = 1. This since d

dt
vs(t, e)|t=t0 ∈

Tv(t0,e)(W
s
le(r)) and d

dt
vu(t, e)|t=t0 ∈ Tv(t0,e)(W

u
le(r)) implies transversality, which finishes

our proof.

The order of choice of parameters in the above argument is important, so let us

quickly run through how it should be conducted. We first choose sufficiently small µk so

that we can apply Theorem 31. Then by choosing small R(µk) we ensure that µ
−1/3
k R(µk)

is sufficiently small compared with Mµk
and M ′

µk
. We then choose e so that eµ

−1/3
k is

sufficiently small so that we have transversal intersections of πx,px(W
u
le(r)∩Σt0∩{ȳ = 0})

and πx,px(W
s
le(r) ∩Σt0 ∩ {ȳ = 0}). The parameter e needs also to be sufficiently small so

that Mµk
(t0) and M ′

µk
(t0) dominate in (99) and (100) respectively.

Remark 40 In the proof of Theorem 39 we see that we need to choose the radius R(µk)

to be sufficiently small so that µ
−1/3
k R(µk) is small in comparison to the Melnikov integral

Mµk
and its derivative. Since we do not have uniform bounds on the size of the Melnikov

integral with respect to µk, from our argument we cannot say how small R(µk) needs to

be. From our numerical investigation which will follow in Table 2 we can see that for

t0 for which we have a simple zero of the Melnikov integral, the bound on the derivative

is independent of µk. This means that we need to choose the radius R(µk)µ
1/3
k to be

sufficiently small (hence R(µk) converges to zero with µk going to zero).
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Figure 5. The manifolds W s
le(r) and Wu

le(r) intersected with Σt1 , Σt2 and {y = 0}, in
the x, px,H coordinates for t1 < t0 < t2.

Corollary 41 If µk is sufficiently small and the Melnikov integral has a simple zero

then for sufficiently small µ
−1/3
k R(µk) there exists a ζ > 0, such that for any two radii

r1 and r2 from C ∩ [R, R(µk)]

|r1 − r2| < ζeµ
−1/3
k ,

the manifolds W s
le(ri)

and W u
le(rj)

intersect transversally for i, j ∈ {1, 2}.
Proof. The proof of this fact is a mirror argument to the proof of Theorem 39.

Below we restrict our attention to pointing out the difference we have connected with

the derivation of (99) in the setting where we have two radii.

Let hu
1(t0, e) and hs

2(t0, e) stand for energies of points of potential intersection

(constructed analogously to hu(t0, e) and hs(t0, e) in (95)). Let ru
1 and rs

2 stand for

radii constructed analogously to ru and rs (see (96)), but coming from the unstable

and stable manifold of le(r1) and le(r2) respectively. Using Lemma 17 and the fact that

ru
1 − r1 = O(eµ

−1/3
k ) and rs

2 − r2 = O(eµ
−1/3
k ) we have

|H̄(µk, l(r
u
1 ))− H̄(µk, l(r

s
2))| ≤ O(|(ru

1 )2 − (rs
2)

2|)
≤ O(R(µk)|ru

1 − rs
2|)

≤ O(R(µk)|r1 − r2|) + O(eµ
−1/3
k R(µk)).

Using an identical argument to the derivation of (99) this gives us

hu
1(t0, e)− hs

2(t0, e) = eMµk
(t0) + O(R(µk)|r1 − r2|) + O(eµ

−1/3
k R(µk)) + o(e).

Using this estimate and following the proof of Theorem 39 we obtain our claim.

Remark 42 Mirror arguments to the proof of Theorem 39 and Corollary 41 give

transversal intersections of invariant manifolds for invariant tori of the PRE3BP with

µ = µk for k = 2, 3, . . .. Here we state this as a separate remark since Theorem 39 and

Corollary 41 are fully rigorous and do not rely on any numerical computations. For the

argument with an arbitrary µk we would need to use the fact that in the PRC3BP we

have a twist property on the family of Lyapounov orbits and apply Remark 32. The twist

for arbitrary µk has only been demonstrated numerically (see Table 1).



Transition Tori in the Planar Restricted Elliptic Three Body Problem 38

7. Computation of the Melnikov integral.

In this section we will demonstrate that for t0 = 0 and for all parameters µk from

Theorem 3 the Melnikov integral Mµk
(t0) (93) is zero and also that

dMµk

dt0
(0) 6= 0. The

fact that the Melnikov integral is zero will follow directly from the S-symmetry (8) of the

homoclinic orbit q0
µk

(t). The fact that
dMµk

dt0
(0) 6= 0 will be demonstrated numerically.

We will compute the integral for the first few parameters µk and then demonstrate

that for sufficiently small parameters µk the integral converges to an integral along an

unstable manifold of the Hill’s problem.

7.1. The Melnikov integral and its derivative at t0 = 0

We start with a lemma which ensures the convergence of the Melnikov integral (93).

Lemma 43 The Melnikov integral (93) and its derivative is absolutely convergent

uniformly with respect to t0. The Melnikov function can be expressed as

Mµk
(t0) =

∫ +∞

−∞

[
∂Ḡ

∂t

(
µk, q̄

0
µk

(t) , t + t0
)− ∂Ḡ

∂t

(
µk, L̄

µk
2 , t + t0

)]
dt, (101)

and also

dMµk

dt
(t0) =

∫ +∞

−∞

[
∂2Ḡ

∂t2
(
µk, q̄

0
µk

(t) , t + t0
)− ∂2Ḡ

∂t2
(
µk, L̄

µk
2 , t + t0

)]
dt. (102)

Proof. The orbit q̄0
µk

(t) is the homoclinic orbit to the Libration point L̄µk
2 . Let us

note that the velocity x̄′ and ȳ′ of q̄0
µk

(t) exponentially tends to zero as t tends to plus

infinity and minus infinity. Moreover the partial derivatives of Ḡ on q̄0
µk

(t) are uniformly

bounded. This means that the integral over
∫ +∞

−∞
|{H̄, Ḡ}|(q̄0

µk
(t), t + t0)dt =

∫ +∞

−∞
|x̄′∂Ḡ

∂x̄
+ ȳ′

∂Ḡ

∂ȳ
|(µk, q̄

0
µk

(t), t + t0)dt,

is convergent uniformly with respect to t0.

The orbit q̄0
µk

(t) is the solution of the PRC3BP, hence differentiating gives

dḠ

dt

(
µk, q̄

0
µk

(t) , t + t0
)

=
∂Ḡ

∂t

(
µk, q̄

0
µk

(t) , t + t0
)

+
{
Ḡ, H̄

} (
µk, q̄

0
µk

(t) , t + t0
)
. (103)

From (103) we have

Mµk
(t0) =

∫ +∞

−∞

{
H̄, Ḡ

}
(µk, q̄

0
µk

(t), t + t0)dt

= lim
T→∞

∫ T

−T

(
∂Ḡ

∂t

(
µk, q̄

0
µk

(t) , t + t0
)− dḠ

dt

(
µk, q̄

0
µk

(t) , t + t0
))

dt (104)

= lim
T→∞

[
Ḡ

(
µk, q̄

0
µk

(−T ) ,−T + t0
)− Ḡ

(
µk, q̄

0
µk

(T ) , T + t0
)

+

∫ T

−T

∂Ḡ

∂t

(
µk, q̄

0
µk

(t) , t + t0
)
dt

]
.
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To complete the proof of (101) observe that that from limT→±∞ q̄0
µk

(T ) = L̄µk
2 it follows

that

lim
T→∞

(∫ T

−T

∂Ḡ

∂t

(
µk, L̄

µk
2 , t + t0

)
dt− Ḡ

(
µk, q̄

0
µk

(T ) , T + t0
)

(105)

+ Ḡ
(
µk, q̄

0
µk

(−T ) ,−T + t0
))

= 0

uniformly with respect to t0.

From (104) and (105) we obtain (101).

To prove (102) it is enough to observe that the formal integration of (101) is correct,

because the integral on the right hand side of (102) is uniformly convergent with respect

to t0 for the same reasons as the integral in formula (101).

It turns out that the computation of the Melnikov integral is not the major obstacle.

The fact that we have a zero for t0 = 0 follows directly from the S-symmetry (8) of the

homoclinic orbit q0
µk

(t) and G. This fact is shown in the below lemma . Later though

we will need to show that this zero is nontrivial by computing
dMµk

dt
(0), which turns out

to be a much harder task. The lemma also provides the formula for the needed integral.

Lemma 44 The Melnikov integral (93) at t0 = 0 is equal to zero and

dMµk

dt
(0) = −2µ

−2/3
k

∫ 0

−∞

(
G

(
µk, q

0
µk

(t) , t
)−G (µk, L

µk
2 , t)

)
dt. (106)

Proof. First let us observe that from (27)

Ḡ
(
µk, q̄

0
µk

(t) , t
)

= µ
−2/3
k G

(
µk, q

0
µk

(t) , t
)
.

The orbit q0
µk

(t) and fixed point Lµk
2 are S-symmetric with respect to the symmetry (8).

From (7), (23), by direct computation one can check that ∂G
∂t

(µ, S (·) ,−t) = −∂G
∂t

(µ, ·, t)
and that ∂2G

∂t2
(µ, S (·) ,−t) = ∂2G

∂t2
(µ, ·, t) hence we have

∫ 0

−∞

(
∂Ḡ

∂t

(
µk, q̄

0
µk

(t) , t
)− ∂Ḡ

∂t

(
µk, L̄

µk
2 , t

))
dt =

= µ
−2/3
k

∫ +∞

0

(
∂G

∂t
(µk, q

0
µk

(−t),−t)− ∂G

∂t
(µk, L

µk
2 ,−t)

)
dt

= µ
−2/3
k

∫ +∞

0

(
∂G

∂t

(
µk, S

(
q0
µk

(t)
)
,−t

)− ∂G

∂t
(µk, S (Lµk

2 ) ,−t)

)
dt

= −µ
−2/3
k

∫ +∞

0

(
∂G

∂t

(
µk, q

0
µk

(t) , t
)− ∂G

∂t
(µk, L

µk
2 , t)

)
dt,

which gives Mµk
(0) = 0. From an analogous computation using ∂2G

∂t2
(S (·) ,−t) =

∂2G
∂t2

(·, t) follows

dMµk

dt
(0) = 2µ

−2/3
k

∫ 0

−∞

(
∂2G

∂t2
(
µk, q

0
µk

(t) , t
)− ∂2G

∂t2
(µk, L

µk
2 , t)

)
dt.

Form (23) we have ∂2G
∂t2

= −G, which gives (106).
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Remark 45 The verification of the fact that
dMµk

dt
(0) is nonzero is not straightforward.

In this paper we will restrict ourselves to numerical verification of this fact. We would

like to highlight that for a given parameter µk it is possible to obtain a rigorous-computer-

assisted estimate on
dMµk

dt
(0). To do so one first needs to obtain a rigorous bound [µk, µk]

which contains the parameter µk for which we have a homoclinic orbit. Then one needs

to obtain rigorous enclosures on the trajectories q0
µ(t) for all µ ∈ [µk, µk]. Using these,

a bound on
dMµk

dt
(0) can be computed from (106).

We have successfully conducted such computations for the parameter µ2. We have

used the fact that if one extends the system by including µ as an additional variable,

then for any interval I the set {Lµ
2}µ∈I is a normally hyperbolic invariant manifold.

We have applied a topological method, given in [6], [7], for detection of normally

hyperbolic manifolds, combined with a parameterization method [5]. Based on these

we proved the following. We have shown that the parameter µ2 for which we have

the homoclinic orbit is contained in [0.0042538631, 0.0042538639]. We then proved that
dMµ2

dt
(0) ∈ [1.301020122, 1.865308899]. A detailed proof of this fact, along with results

for other parameters, will be the subject of a forthcoming publication.

In Table 2 we enclose the (nonrigorous) numerical results for the computation of

(106) obtained for k up to 13.

k
dMµk

dt
(0)

2 1.57396

3 -0.396727

4 0.395119

5 -0.396931

6 0.395784

7 -0.395511

8 0.393389

9 -0.393253

10 0.390924

11 -0.391194

12 0.388961

13 -0.389459

Table 2. Numerical results for the derivation of
dMµk

dt
(0) for various mass parameters.

To obtain the numerical results from Table 2 we have used a parameterization

method [5] to obtain an expansion of the manifold around Lµk
2 as a polynomial of degree

20. Then we integrated the system numerically using a Taylor method of order 20.

Numerical evidence points to Mµk
having a nontrivial zero for t = 0.
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8. Transition Chains and Main Result

In this section we will show that there exists a sequence of Lyapounov orbits l(ri) for

i = 1, . . . , N which survive for a sufficiently small perturbation e, and such that their

stable and unstable manifolds intersect transversally

W s
le(ri)

t W u
le(ri+1)

and W u
le(ri)

t W s
le(ri+1)

. (107)

Such sequences are referred to as transition chains. Existence of such chains ensures

that we have an orbit which shadows the homo- or heteroclinic connections between

the surviving tori generating rich symbolic dynamics (see [10],[11],[12]). Apart from

this, from our argument it will also follow that for any surviving orbit l(r) we also have

transversal intersection of its stable and unstable manifold

W u
le(r) t W s

le(r). (108)

This ensures that the chaotic dynamics of the PRC3BP which is implied by the existence

of a transversal homoclinic orbit to l(r) (see Theorem 4 and Remark 6) survives.

We are now ready to rigorously reformulate our main theorem (Theorem 2).

Theorem 46 For any µ from the sequence of masses {µk}∞k=2 from Theorem 3, if the

twist property is satisfied, then there exists a radius RHill, which is independent of µ, such

that for eccentricities e of the elliptic problem, with eµ−2/3 < κ (see 25 for interpretation

of κ) and sufficiently small eµ−1/3, there exists a Cantor set C ⊂ [0, RHill] such that for

all r ∈ C the Lyapounov orbits l(r) are perturbed to invariant tori le(r) in the extended

phase space. Moreover, if the derivative of the Melnikov integral (106) is nonzero, then

there exists a radius R(µ) of order at most O(µ1/3) and a transition chain le(ri) for a

sequence of radii 0 < r1 < r2 < . . . < rN < R(µ) such that the difference rN − r1 is of

order
(
eµ−1/3

)1/2
.

The transversal intersections of the transition chain (107), (108) lead to a homo-

and heteroclinic tangle of the stable/unstable manifolds of le(ri), which in turn leads to

symbolic dynamics involving diffusion in energy.

Remark 47 Let us note now that we can verify assumptions of the above theorem

based on some numerical results. The twist property for the family of Lyapounov orbits

has been rigorously proved for sufficiently small µk in Theorem 31, but the fact that

we have twist for µk with k = 1, 2, . . . has only been demonstrated numerically (see

Section 4, Table 1 and Remark 32). Secondly, assumptions of Theorem 46 require that

the derivative of the Melnikov function (106) at zero is nonzero. This has only been

demonstrated numerically in Section 7.

We believe that the above can be verified using rigorous-computer-assisted methods.

This is currently a subject of ongoing work (see Remark 45).

Remark 48 All radiuses considered in Theorem 46 are given in the Hill’s coordinates

(15). This means that in the original coordinates of our system (given by the

Hamiltonian (22)) the radiuses are reduced by a factor of µ1/3.



Transition Tori in the Planar Restricted Elliptic Three Body Problem 42

Proof of Theorem 46. Let us fix a µ = µk. For sufficiently small µ by Theorem

31, and if the twist condition holds for all µk by Remark 32, we have the radius

RHill and a Cantor C ⊂ [0, RHill] of radii for which the Lyapounov orbits survive the

perturbation. From Theorem 39, Remark 42 (see also Corollary 41) it follows that by

choosing R(µ) < RHill, for which R(µ)µ−1/3 is sufficiently small, we know that there

exists a ζ > 0 such that for radii r1, r2 ∈ C such that |r1 − r2| < ζeµ−1/3, for e with

sufficiently small eµ−1/3, we have

W u
le(ri)

t W s
le(ri)

for i ∈ {1, 2}.

We now need to show that we can find a sequence r1 < r2 < . . . < rN such that ri ∈ C

and the difference rN−r1 is of order
(
eµ−1/3

)1/2
, for which the gaps between ri and ri+1

are smaller than ζeµ−1/3. The existence of such a sequence follows from Proposition 34.

The last claim of Theorem 46 follows from [10], [11].

9. Concluding remarks, future work

In this paper we have shown that the chaotic dynamics observed for the planar restricted

circular three body problem survives the perturbation into the planar restricted elliptic

three body problem, when its eccentricity is sufficiently small. We have also shown that

this dynamics is extended to include diffusion in energy. The diffusion proved in this

paper covers a small range of energies. This is due to the fact that in our argument we

use a Melnikov type method which does not allow us to jump between the ”large gaps”

between the KAM tori. An interesting problem which could be addressed is whether

these large gaps can be overcome (this potentially could be done using techniques similar

to [9] or [12]).

Our result holds only for a specific family {µk} of masses of the primaries. The

choice of these masses is such that they ensure the existence of the homoclinic orbit to

Lµk
2 , which is then used for the Melnikov argument. An interesting question is whether

one can observe similar dynamics in real life setting, say in the Jupiter-Sun system. In

such a case we will no longer have a homoclinic connection for the point Lµ
2 . For the

(circular) Jupiter-Sun system though we know that we have a transversal homoclinic

connection for Lyapounov orbits (see [17] and [28]). Such orbits could be used for

a similar construction. Our argument also required that we have sufficiently small

eccentricities. It would be interesting to find out if the dynamics persists for the actual

eccentricity of the Jupiter-Sun system. For this problem it is quite likely that applying

the mechanism discussed in this paper would be very hard. Our argument relies on the

use of the KAM theorem, which works for sufficiently small perturbations. To apply

it for an explicit eccentricity seems a difficult task. Other methods could be exploited

though. Instead of proving the persistence of the tori and trying to detect intersections

of their invariant manifolds, one could focus on detection of symbolic dynamics for the

diffusing orbits in the spirit of [28]. This seems a far more realistic target for the near

future and is being currently considered as an extension of this work.
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11. Appendix

11.1. Splitting of manifolds associated to Lyapounov orbits of the PRC3BP

Here we investigate the dependence on parameter µ of the splitting of the intersection

of curves from Theorem 4. Let µ = µk, which means that in (12) α = 0. The transversal

intersection of the curves is on {ẋ = 0}. The curve intersects {ẋ = 0} for σ = σ0 for

which

(K1 cos τ cos σ0 −K2 sin τ sin σ0) = O(µ4/3). (109)

This is because from (12) only then can we have Mf (σ0) sufficiently close to zero so that

ẋ = 0. In particular, (12) and (109) gives

Mf (σ0) = O(µ2/3). (110)

By implicit function theorem we know that

γ(µ,
√

∆C) :=
∂M

∂σ
(σ0) (111)

= −µ−2/3
√

∆C3M (N + 2M cos τ)−1 (−K1 cos τ sin σ0 −K2 sin τ cos σ0)

N + 2M cos(Mf (σ0))

∈ µ−2/3
√

∆C [a1, a2] ,

where a1, a2 are constants, 0 /∈ [a1, a2] (for sufficiently small µ and ∆C these constants

are arbitrarily close to one another. For their precise values one would need to substitute

the constants M, τ , K1, K2, N from [20] into (111)). By (109), (110), (111)

∂x

∂σ
(σ0)

=
√

∆C (N + 2M cos τ)−1 N
(
− sin (Mf (σ0)) γ(µ,

√
∆C)

)

· (K1 cos τ cos σ0 −K2 sin τ sin σ0)

+
√

∆C (N + 2M cos τ)−1 (2M + N cos Mf (σ0)) (−K1 cos τ sin σ0 −K2 sin τ cos σ0)

+ µ1/3M sin (Mf (σ0)) γ(µ,
√

∆C)

+ µ2/3

{
−2MN

3
sin (Mf (σ0)) γ(µ,

√
∆C) + M22 sin (Mf (σ0)) cos (Mf (σ0)) γ(µ,

√
∆C)

}

∈
√

∆C [b1, b2] ,



Transition Tori in the Planar Restricted Elliptic Three Body Problem 44

where b1, b2 are constants, 0 /∈ [b1, b2] (the second term in the above equation plays a

dominant role). Also

∂ẋ

∂σ
(σ0) = cos (Mf (σ0)) γ(µ,

√
∆C)

[√
∆CN (K1 cos τ cos σ0 −K2 sin τ sin σ0)

N + 2M cos τ

+µ1/3M + µ2/3

{
MN

3
+ 2M2 cos Mf +

M

3
α

}]

+ sin (Mf (σ0)) [
√

∆CN (N + 2M cos τ)−1 (−K1 cos τ sin σ0 −K2 sin τ cos σ0)

− 2M2 sin (Mf (σ0)) γ(µ,
√

∆C)]

∈ µ−1/3
√

∆C[c1, c2],

where c1, c2 are constants, 0 /∈ [c1, c2] . This means that

∂x

∂σ
(σ0)/

∂ẋ

∂σ
(σ0) ∈ µ1/3[d1, d2], (112)

for constant d1, d2, 0 /∈ [d1, d2] . Stable/unstable manifolds are S symmetric (see (8) and

Theorem 4), hence for a curve coming from the intersection of the stable manifold with

{y = 0} we shall have same estimates for ∂x
∂σ

, and estimates with reversed sign for ∂ẋ
∂σ

.

This by (112) gives a splitting of the two manifolds with angle of order µ1/3.

11.2. Derivation of equations for the PRE3BP in rotating coordinates

Here we derive the Hamiltonian (22) of the PRE3BP in rotating coordinate system. Let

R(ϕ) be the rotation by the angle ϕ

R(ϕ) =

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

]
.

The ellipse which is obtained when solving the 2-body problem is given by (see (21))

r(t) =
1− e2

1 + e cos ψ(t)
= 1− e cos ψ(t) + O(e2), (113)

z(t) = r(t)R(ψ(t)) · [1, 0]T ,

ψ(t) = t + 2e sin t + O(e2).

The primary with the mass µ (the planet) has the following location zp(t) = (µ−1)z(t),

while the primary mass 1− µ (the Sun) is located at the point zs(t) = µz(t).

We shall now compute the distances between the comet and the primaries in

rotating coordinates. Let r1(t) be the square of the distance between the comet and the

Sun, and r2(t) between the comet and the planet. Let (x(t), y(t)) denote the ’rotating’

coordinates of the comet and q(t) be the position of the comet in the ’static’ coordinate

frame (x(t), y(t)) = R(−t)q(t). Using the fact the the length of the vector is not changed
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by the rotation and (113) we have

r1(t)
2 =

∥∥R(t) · (x, y)T − µr(t)R(ψ(t)) · [1, 0]T
∥∥2

=
∥∥(x, y)T − µr(t)R(ψ(t)− t) · [1, 0]T

∥∥2

= x2 + y2 − 2µr(t) (x cos (ψ(t)− t) + y sin (ψ(t)− t)) + µ2r(t)2

= x2 + y2 − 2µ (x cos (ψ(t)− t) + y sin (ψ(t)− t)) + µ2+

2µe cos ψ(t) (x cos (ψ(t)− t) + y sin ψ(t)− t))− 2µ2e cos ψ(t) + O(µe2).

Using

ψ(t) = t + 2e sin t + O(e2),

cos (ψ(t)) = cos t− 2e sin2 t + O(e2),

cos (ψ(t)− t) = 1 + O(e2),

sin (ψ(t)− t) = 2e sin t + O(e2),

x cos (ψ(t)− t) + y sin (ψ(t)− t) = x + 2ey sin t + O(e2),

cos (ψ(t)) (x cos (ψ(t)− t) + y sin (ψ(t)− t)) = x cos t + O(e),

in the expression for r1(t) we obtain

r1(t)
2 = (x− µ)2 + y2 + 2eḡ(µ, x, y, t) + O(µe2), (114)

where ḡ is given in (24). Expression for r2(t) is obtained from (114) with the substitution

µ 7→ (µ− 1). Observe that

1√
r2 + c

=
1

r
√

1 + c
r2

=
1

r

(
1− c

2r2
+ O

(( c

r2

)2
))

. (115)

We shall use notation r1, r2 from (4), with r1 > δ and r2 > µ1/3δ. Note that to apply

(115) for r = r2 we need to have eḡ(µ− 1, x, y, t) + O(µe2) < r2
2, which means that we

need to take e sufficiently small so that eµ−2/3 < κ for sufficiently small κ. Equations

(114), (115) give

1

r1(t)
=

1

r1

− eḡ(µ, x, y, t)

r3
1

+ O(µ2e2), (116)

1

r2(t)
=

1

r2

− eḡ(µ− 1, x, y, t)

r3
2

+ O(e2µ−5/3). (117)

Substituting (116), (117) into (1) gives (22).
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