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Abstract

We present a Melnikov type approach for establishing transversal in-
tersections of stable/unstable manifolds of perturbed normally hyperbolic
invariant manifolds (NHIMs). The method is based on a new geometric
proof of the normally hyperbolic invariant manifold theorem, which es-
tablishes the existence of a NHIM, together with its associated invariant
manifolds and bounds on their first and second derivatives. We do not
need to know the explicit formulas for the homoclinic orbits prior to the
perturbation. We also do not need to compute any integrals along such
homoclinics. All needed bounds are established using rigorous computer
assisted numerics. Lastly, and most importantly, the method establishes
intersections for an explicit range of parameters, and not only for pertur-
bations that are ‘small enough’, as is the case in the classical Melnikov
approach.
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1 Introduction

The presence of the transversal intersection between stable and unstable man-
ifolds for fixed point or periodic orbit is one of the main technical tools used
to prove the chaotic behavior of the deterministic dynamical system (see for
example [15] and the literature given there). In the context of the small pertur-
bations of an integrable system the basic analytical technique used to establish
the transversality is the Melnikov method [21] introduced in 1963. V.I. Arnold
generalized these ideas to produce the first example of what is now called Arnold
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Diffusion [1]. In fact the (now widely-used) Melnikov function (see for exam-
ple [25, 17]) is, up to a constant, exactly the integral that Poincaré derived
from Hamilton-Jacobi theory to obtain his obstruction to integrability in the
restricted three body problem in [24].

Melnikov type methods are based on investigating integrals along homoclinic
orbits to normally hyperbolic invariant manifolds (NHIMs) [8, 10, 11, 17, 21, 25].
There are natural problems with such approach: It is very rarely the case that
one can establish analytic formulae for such homoclinics. In most cases they
are not known, and then computing integrals along them is impossible. The
second problem is that even if one has an analytic formula for the homoclinic,
the integral in question can be very hard to compute. In most real life systems
such integrals would not be expressed through simple formulas.

We resolve these two problems the following way. Firstly, we investigate the
dependence of the manifolds on the parameter using geometric and computer
assisted tools. The slopes of the manifolds depending on the parameter follow
from cone condition type bounds in the state space extended by the parameters.
Second order derivatives also follow from geometric structures. This way we ob-
tain bounds on the stable and unstable manifolds of NHIMs, together with their
dependence up to second order on the perturbation parameter. We then prop-
agate these bounds using rigorous (interval based) integration up to a section
where they meet. Based on the bounds, and in particular using the dependence
on the manifolds on the perturbation parameter, we establish transversal inter-
sections for a given, explicit, range of perturbations. The range is large enough
so that for the larger parameters from the range we can detect the transver-
sal intersections directly, and continue to higher perturbations using standard
techniques.

Our contribution to the existing theory is twofold:
Firstly, in this paper we develop a method for establishing centre unstable

manifolds of NHIMs, in the context of ordinary differential equations. The main
benefit from our approach is that we do not need to assume that the NHIM exists
in order to apply our method. (Our method is constructive, not perturbative.)
We formulate assumptions, which guarantee the existence of a center-unstable
manifold within an investigated neighborhood. The assumptions of our theo-
rem depend only on the bounds on the first derivative of the vector field. These
guarantee that the center-unstable manifold exists, and is a graph of a function
within the investigated region. The method gives explicit bounds on the slope
of the manifold. Moreover, by considering bounds on the second derivative of
the vector field, we obtain explicit estimates on the second order derivatives
of the center-unstable manifold. By changing the sign of the vector field, the
method establishes existence of center-stable manifolds. By intersecting the
center-stable manifold with the centre-unstable manifold we establish the exis-
tence of a NHIM within the investigated region. Our method also establishes
bounds on the first and second order dependence of the manifolds on the pa-
rameters for families of ODEs. Summing up: the method is explicit, establishes
existence of the manifolds over a specified, macroscopic domain, all assumptions
can be verified from simple estimates on the first and second derivative of the
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vector field, and gives explicit estimates on the dependence of the manifolds on
parameters.

Our second contribution is developing a Melnikov-type theory for estab-
lishing transversal intersections of stable/unstable manifolds of NHIMs. The
method is based on interval arithmetic integration of ODEs and propagation of
local bounds on the manifolds up to the point of their intersection. The benefit
from our approach is the following. We do not have to know any analytic formu-
lae for the homoclinics. They are established using rigorous computer assisted
numerics. Secondly, we do not need to compute any integrals. All bounds on the
manifolds are propagated by our integrator in form of rigorous, interval arith-
metic bounds for the jets. This method allows us to establish intersections of
the manifolds for specific ranges of parameters. These ranges are large enough
to later continue the proof of the intersections of the manifolds using standard
continuation arguments.

We emphasize that, to the best of our knowledge, this is the first computer
assisted Melnikov type method, which works over an explicit parameter range.
Since our method does not rely on analytic computations along homoclinics,
we believe that our approach is very versatile and can be applied to numerous
problems that are not accessible to the standard methods.

The paper is organized as follows. We first address the problem how to
establish transversal intersections of manifolds for given ranges of perturbation
parameters, under the assumption that we have bounds on the first and sec-
ond derivatives of the stable/unstable manifolds of NHIMs. This problem is
introduced below in subsection 1.1, and the main idea behind our approach is
explained in subsection 1.2. We then follow up with full details in section 3,
where the formulation is made precise and the main results are proven. Sec-
ondly, we address how to establish the needed bounds for the derivatives of
stable/unstable manifolds. In section 4 we recall the results from [6], where
such bounds are established in the setting of discrete dynamical systems. In
section 4 we also extend the method to obtain explicit bounds on second deriva-
tives of the manifolds. In section 5 we further extend the results from section 4
to the setting of ODEs. We make sure that the needed assumptions follow from
the bounds on the vector field, so that we do not have to integrate the ODEs.
As the by-product we obtain also a generalization of results from [6] about es-
tablishing of NHIM for ODEs. In section 6 we give an example of application
of our method.

An alternative to [6] and its extension presented in this paper for obtaining
bounds on derivatives of stable/unstable manifolds of NHIMs, is the parameter-
ization method [2]. This method is suitable for application to computer assisted
proofs. (For examples of such applications see [3, 7, 14, 19, 22], amongst others.)
We believe that our approach to Melnikov method (from sections 1.1, 1.2, and
3) could also be successfully combined with [2]. We decide to use the geometric
method [6] and its generalization to ODEs, since it does not require high order
expansions in order to establish existence of the manifolds, but follows from
direct estimates on first and second derivatives of the vector field.

In the two subsections that follow we specify the setup under which our
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paper is written and outline the main idea.

1.1 The setup

In this section we formulate our main goals and set up the notation. The problem
is formulated in the simplest possible setting. We consider a non-autonomous
perturbation of an autonomous ODE on the plane. This enables us to present
the main features. Our method though can be applied in a much more general
setting.

We consider a vector field

f0 : R2 → R2,

and a function
g : R2 × R× R→ R2.

We assume that g is 2π periodic in the last coordinate. We shall consider the
following family of time periodic ODEs

(x, y)
′

= fε (x, y, t) = f0 (x, y) + g (x, y, ε, t) . (1)

We assume that for ε = 0 holds g (x, y, 0, t) = 0. This means that we treat g as
a perturbation, with ε being the perturbation parameter.

We shall assume that for ε = 0, (1) has a hyperbolic fixed point (x0, y0) and
that we have a homoclinic orbit along the stable/unstable manifold of (x0, y0).

Since the fixed point is hyperbolic, for ε 6= 0 it will be perturbed to a 2π
periodic hyperbolic orbit. We shall use a notation γε (t) for this orbit and assume
that such orbits exist for ε ∈ E, where E ⊂ R is a closed interval around zero.

In order to investigate the intersections of the stable/unstable manifolds of
γε we consider a section Σ, which is transversal to the homoclinic orbit (which
exists for ε = 0). For ε ≥ 0, the stable manifold of γε for the problem (1),
with initial condition starting at time τ will hit Σ at a point, which we denote
as ps (ε, τ). Similarly, by pu (ε, τ) we denote the point of intersection of the
unstable manifold with Σ.

Remark 1 The construction of the points ps (ε, τ), pu (ε, τ) is made precise and
carried out in full detail in section 3.1. Figure 1 gives a graphical illustration of
the setup.

We then define the (signed) distance δ between the two manifolds on Σ as

δ (ε, τ) := pu (ε, τ)− ps (ε, τ) . (2)

The main question is to establish conditions on δ (ε, τ) that ensure that the
stable/unstable manifolds of such orbits intersect transversally, for all ε ∈ E \
{0}.

The above setting, in which we are perturbing a fixed point, is the simplest
one. In general we could be interested in intersections of stable/unstable mani-
folds of perturbed NHIMs. The tools for establishing such manifolds and their
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perturbations, together with all the ingredients needed to apply our method
are developed in [6] and its generalization to ODEs form section 5. There are
no obstacles to generalizing to such setting. We restrict ourselves though to
the simplest case for the sake of clarity of exposition and postpone detailed
treatment of the general case for NHIMs for later publication.

1.2 The main idea in simplest terms

We consider a C2 function δ : R× S1 → R, which is defined in (2). Since for
ε = 0 the stable and unstable manifolds coincide forming a homoclinic orbit, we
know that

δ (0, τ) = 0 for all τ ∈ S.

For fixed ε ∈ R we will use the notation

δε (τ) := δ (ε, τ) .

Let E be a closed interval in R, which contains zero. Our aim is to give a
simple set of assumptions that will lead to a conclusion that for any ε ∈ E \ {0}
the function δε will have nontrivial zeroes. In other words, that there exists a
ξ (ε) ∈ S1 such that

δε (ξ (ε)) = 0,
dδε
dτ

(ξ (ε)) 6= 0.

For A ⊂ R× S1 we shall write[
∂δ

∂ε
(A)

]
:=

[
inf

(ε,τ)∈A

∂δ

∂ε
(ε, τ) , sup

(ε,τ)∈A

∂δ

∂ε
(ε, τ)

]
.

Our idea is based on the fact that for any ε ∈ E \ {0}

δε (τ)

ε
∈
[
∂δ

∂ε
(E × {τ})

]
. (3)

This means that if we can establish that for some τ1, τ2 ∈ S1[
∂δ

∂ε
(E × {τ1})

]
< 0 <

[
∂δ

∂ε
(E × {τ2})

]
, (4)

then for any ε ∈ E \ {0}, by (3) and (4),

δε (τ1)

ε
< 0 <

δε (τ2)

ε
.

Hence, by the Bolzano theorem, there exists a ξ (ε) ∈ [τ1, τ2], such that

δε (ξ (ε)) = 0.
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If in addition to (4) we have that[
∂2δ

∂τ∂ε
(E × [τ1, τ2])

]
> 0, (5)

then for any τ ∈ [τ1, τ2]

d

dτ

(
δε (τ)

ε

)
∈
[
∂2δ

∂τ∂ε
(E × [τ1, τ2])

]
> 0.

Thus, for each ε ∈ E \ {0}, the point ξ (ε) is unique and

dδε
dτ

(ξ (ε)) 6= 0.

To sum up the above discussion, in order to show that for any ε ∈ E \ {0}
we have nontrivial zeros of the function δε, it is sufficient to verify (4) and (5).
We emphasize that in this approach we have an explicit range E of ε for which
the nontrivial zeros exist.

Summing up, to compute the Melnikov distance δ, our method combines two
ingredients, both computer assisted:

• the geometric method to establish explicit bounds for normally hyperbolic
invariant manifolds and their stable and unstable fibers, together with
their dependence on parameter.

• the rigorous C2-integration of our system away from the NHIM.

This method can be generalized to many dimensions.

2 Preliminaries

2.1 Notations and conventions

We will use the Euclidian norm unless stated otherwise. For two vectors z1, z2

we denote their scalar product by (z1|z2). For a matrix A, by A> we denote
the transpose of A. By I we will denote the identity matrix, the dimension will
be known from the context.

For a set A, we shall use Ac to denote its complement.
For a function f : Rn → Rm for z1, z2 ∈ Rn we define an average of f on the

segment [z1, z2] by

f(z1, z2) =

∫ 1

0

f(z1 + s(z2 − z1))ds.

Observe that we have the following equality for f ∈ C1:

f(z2)− f(z1) = Df(z1, z2)(z2 − z1).
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2.2 Logarithmic norms and related topics

In this section we state some facts about logarithmic norms [9, 20, 16, 18] and
some analogous notions. These are later used in section 5. Since the results are
of technical nature, we give their proofs in the appendix.

Definition 2 For a square matrix A ∈ Rn×n we define m(A) by

m(A) = min
z∈Rn,‖z‖=1

‖Az‖,

the logarithmic norm of A denoted by l(A) by [20, 9, 16, 18]

l(A) = lim
h→0+

‖I + hA‖ − ‖I‖
h

(6)

and the logarithmic minimum of A

ml(A) = lim
h→0+

m(I + hA)− ‖I‖
h

. (7)

It is easy to see that if A is invertible, then

m(A) =
1

‖A−1‖
,

otherwise m(A) = 0.
It is known that l(A) is a convex function.

Lemma 3 The limit in the definition of ml(A) exists and

ml(A) = −l(−A). (8)

Moreover, the convergence to this limit is locally uniform with respect to A and
ml(A) is a concave function.

Proof. See Appendix 8.1.
Below theorem establishes a bound on distances of solutions of an ODE in

terms of the logarithmic norm. The proof of this result can be found in [16].

Theorem 4 Consider an ODE

x′ = f(t, x), (9)

where x ∈ Rn and f : R× Rn → Rn is C1.
Let x(t) and y(t) for t ∈ [t0, t0 +T ] be two solutions of (9). Let W ⊂ Rn such

that for each t ∈ [t0, t0 + T ] the segment connecting x(t) and y(t) is contained
in W . Let

L = sup
x∈W,t∈[t0,t0+T ]

l

(
∂f

∂x
(t, x)

)
.

Then for t ∈ [0, T ] holds

‖x(t0 + t)− y(t0 + t)‖ ≤ exp(Lt) ‖x(t0)− y(t0)‖ .
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Theorem 4 gives an upper bound for the distance between solutions of an
ODE. We now show a similar result, which allows us to obtain a lower bound.

Theorem 5 Consider an ODE

x′ = f(x), (10)

where x ∈ Rn and f : Rn → Rn is C1.
Let x(t) and y(t) for t ∈ [0, T ] be two solutions of (10). Let W ⊂ Rn be such

that for each t ∈ [0, T ] the segment connecting x(t) and y(t) is contained in W .
Let

ml(Df,W ) = inf
x∈W

ml(Df(x)).

Then for t > 0 holds

‖x(t)− y(t)‖ ≥ exp(ml(Df,W )t)‖x(0)− y(0)‖.

Proof. See Appendix 8.2.
In above results the choice of norms was arbitrary. We will apply these

results in the case when the norm is Euclidean. In such case we have the
following results.

Lemma 6 For the Euclidian norm holds

l(A) = max{λ ∈ spectrum of (A+A>)/2} (11)

ml(A) = min{λ ∈ spectrum of (A+A>)/2}. (12)

Proof. The formula (11) is well known [16]. From Lemma 3, ml(A) = −l(−A),
which gives (12).

Lemma 7 Consider the Euclidean norm ‖·‖. Assume that A ∈W , where W ⊂
Rn×n is compact. Assume also that h ∈ (0, h0]. Then

‖I + hA‖ = 1 + hl(A) + r(h,A),

where
‖r(h,A)‖ ≤Mh2,

for some constant M = M(h0,W ) (the constant M depends on h0 and W ).

Proof. See Appendix 8.3.

Lemma 8 Assume that A ∈ W , where W ⊂ Rn×n compact. Assume h ∈
(0, h0]. Then

m(I + hA) = 1 + hml(A) + r(h,A)

where
‖r(h,A)‖ ≤Mh2

for some constant M = M(h0,W ) (the constant M depends on h0 and W ).

Proof. See Appendix 8.4.
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3 Melnikov type method

In this section we introduce a Melnikov type method. The difference with
the standard approach is that we do not integrate along the homoclinic orbit.
Instead, we assume that we have bounds on the local parameterizations of the
stable/unstable manifold of the perturbed orbit. These are then propagated to
the section where we measure the distance. This formulation allows us to verify
our assumptions for a given range of perturbations. We do not need to assume
that the perturbation is small enough.

While presenting the method, we make a number of assumptions about the
stable and unstable manifolds. Namely that we have their parameterization,
and that we have bounds on their derivatives. Based on these assumptions we
formulate our results. We emphasize straightaway that we know how to obtain
such bounds. This is the subject of subsequent sections.

In section 3.1 we present the method; in particular Theorem 9, which con-
tains the main result. In section 3.2 we discuss how to verify the assumptions,
based on the bounds on the derivatives of the parametrizations of the stable and
unstable manifolds. How such bounds can be obtained is presented in section
5.

3.1 The method

In our treatment of the problem we shall consider the following formulation of
(1), in a state space that is extended to include both the time and the parameter:

x′ = πxfε (x, y, s) ,

y′ = πyfε (x, y, s) , (13)

ε′ = 0,

s′ = 1.

In the extended phase space coordinates q = (x, y, ε, s), we shall use the
notation

q′ = f(q), (14)

for the ODE (13), where
f : R3 × S1 → R4.

We shall write Φt(q) for the flow of (14).
We will refer to the cyclic variable s as s-time or just a time. There will

be also other ‘time’ occasionally appearing in our discussion, this will be the
time along the solution of the system (14), we will refer this variable as t-time.
Given two points on the trajectory of (14) the t-time between them will be the
difference between s-times of these two points.

The family of periodic orbits γε(s) forms a two dimensional invariant mani-
fold (with a boundary) for (14):

Λ =
{

(γε (s) , ε, s) : ε ∈ E, s ∈ S1
}
.
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(The boundary of Λ is ∂Λ =
{

(γε (s) , ε, s) : ε ∈ ∂E, s ∈ S1
}
.)

For any fixed ε ∈ E, we shall write

Λε =
{

(γε (s) , e, s) : e = ε, s ∈ S1
}
,

to denote the invariant set containing the periodic orbit of (1), in the extended
phase space.

Let N be a set in R3 × S1 containing Λ. We shall use W s
loc (Λ) and Wu

loc (Λ)
to denote the local stable and unstable manifolds in N , respectively i.e.

W s
loc (Λ) = {q : Φt(q) ∈ N for all t ≥ 0} ,

Wu
loc (Λ) = {q : Φt(q) ∈ N for all t ≤ 0} .

(Since the set N will be fixed, we do not include it in our notations for the
local manifolds.) We assume that in the neighborhood N we can parameterize
Wu

loc (Λ) by a function

wu : [−ru, ru]× E × S1 → R3 × S1,

where ru ∈ R+. We also assume that W s
loc (Λ) is parameterized by

ws : [−rs, rs]× E × S1 → R3 × S1,

for rs ∈ R+. We assume that our parameterizations satisfy

πε,sw
ι (r, ε, s) = (ε, s) , for ι ∈ {s, u} . (15)

We shall use notations Wu (Λ) , W s(Λ) for the unstable and stable manifolds of
Λ, respectively.

The existence of the manifolds within the set N , together with the fact that
they are graphs of the functions wu and ws, will follow from our construction.
Namely, in sections 4 and 5 we present a detailed method which ensures, using
constructive arguments, that above assumptions are fulfilled within an explicitly
given set N .

Let Σ ⊂ R3 × S1 be a 3-dimensional section for (14), such that for any q ∈
wu
(
(0, ru]× E × S1

)
the first intersection for time t > 0 of the trajectory Φt (q)

with Σ is transversal. We also assume that for any q ∈ ws
(
(0, rs]× E × S1

)
the

first intersection for time t < 0 of the trajectory Φt (q) with Σ is transversal.
For simplicity, without loss of generality, we shall assume that Σ = {y = 0},
hence the coordinates on Σ are (x, ε, s) (see Figure 1).

Let τu(q) and τs (q) stand for

τu (q) = πsq + inf {t > 0 : Φt (q) ∈ Σ} , (16)

τs (q) = πsq + sup {t < 0 : Φt (q) ∈ Σ} .

Therefore τu(q) is the s-time coordinate of the point from the first intersection of
Σ with the forward trajectory of point q. Then τu(q)−πsq is the t-time needed
for q to reach the section Σ. For the τs(q) we have analogous interpretation.
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Figure 1: The perturbed orbit γε(s) in green (which coincides with Λε),
its unstable manifold in blue and stable manifold in red. The two points
on Σ = {y = 0} are pu (ε, τ) := Pu (wu (ru, ε, κ

u (ε, τ))) and ps (ε, τ) :=
P s (ws (rs, ε, κ

s (ε, τ))). In red, we have the trajectory along the solution of
the ODE, which leads to pu (ε, τ). The (signed) distance between pu (ε, τ) and
ps (ε, τ) is the δ (ε, τ).

Figure 2:

Figure 3: The perturbed orbit γε(s) (which coincides with Λε) in green and
its unstable manifold in blue, projected onto the x, s coordinates. The curled
right edge of the blue region is the intersection of the unstable manufold with
Σ. If we start from the point wu (ru, ε, κ

u (ε, τ)), which is at an ru dis-
tance from γε(s), and whose s-time is κu (ε, τ), then we will reach pu (ε, τ) :=
Pu (wu (ru, ε, κ

u (ε, τ))) along a trajectory of the ODE (depicted in red).

11



Let Pu and P s be maps defined as

Pu (q) = Φτu(q)−πsq (q) ,

P s (q) = Φτs(q)−πsq (q) .

The domains of Pu and P s are subsets of R2×E×S1, which contain wu
(
(0, ru]× E × S1

)
and ws

(
(0, rs]× E × S1

)
, respectively. Observe that

πsP
u (q) = τu (q) and πsP

s (q) = τs (q) . (17)

We shall assume that for any τ we can solve the following implicit equations for
functions κu, κs : E × S1 → S1:

τu (wu (ru, ε, κ
u (ε, τ))) = τ, (18)

τs (ws (rs, ε, κ
s (ε, τ))) = τ. (19)

Function κu(ε, τ) gives the s-time of the point on the unstable manifold with
the unstable parameter ru that reaches the section Σ in the s-time equal to τ
(see Figure 3).

The questions related to the solvability of (18),(19) are discussed in Remark
11. We define the distance function δ : E × S1 → R:

δ (ε, τ) := πxp
u (ε, τ)− πxps (ε, τ) , (20)

where
pι (ε, τ) := P ι (wι (rι, ε, κ

ι (ε, τ))) for ι ∈ {s, u} . (21)

The δ will play the key role in our derivations. It will turn out that δ(ε, τ)
measures the (signed) distance between the intersections of Wu(Λε) ∩ {s = τ}
and W s(Λε) ∩ {s = τ} on Σ.

We now formulate our main result.

Theorem 9 Assume that there exists τ1, τ2 ∈ S1 such that for any ε ∈ E

∂

∂ε
δ (ε, τ1) < 0,

∂

∂ε
δ (ε, τ2) > 0. (22)

Then for any ε ∈ E \ {0} there exists τ∗ (ε) ∈ (τ1, τ2) such that Wu (Λε) and
W s (Λε) intersect at a point q (ε) ∈ Σ, for which π(ε,τ)q (ε) = (ε, τ) .

Moreover, if in addition

∂2

∂τ∂ε
δ (ε, τ) > 0, for any ε ∈ E and τ ∈ (τ1, τ2) , (23)

then q(ε) is uniquely defined and for any fixed ε ∈ E\{0}, the manifolds Wu (Λε)
and W s (Λε) intersect transversally at q (ε); the transversality is considered in
the x, y, s coordinates.
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Proof. Let us fix ε and τ, and define two points

qι = qι (ε, τ) = P ι (wι (rι, ε, κ
ι (ε, τ))) for ι ∈ {u, s} . (24)

By definition qu, qs ∈ Σ. Moreover, by definition of κι (ε, τ) (see (18– 19))

π(ε,s)q
u = (ε, τ) = π(ε,s)q

s.

Moreover, by the definition of δ, we also have

πx (qu − qs) = δ (ε, τ) .

We therefore see that to establish that qu = qs it is sufficient to check that
δ (ε, τ) = 0.

If ε = 0, then, since for the unperturbed problem we have a homoclinic orbit,
for any τ ∈ S1

δ(ε = 0, τ) = 0.

We have

δ(ε, τ) = δ (0, τ) +

∫ 1

0

d

dx
δ (xε, τ) dx

= ε

∫ 1

0

∂

∂ε
δ (xε, τ) dx. (25)

From our assumptions it therefore follows that for any ε ∈ E \ {0}

δ (ε, τ1) < 0, δ (ε, τ2) > 0.

By the Bolzano intermediate value theorem (applied to τ → δ (ε, τ)), for any
ε ∈ E there needs to be a τ∗ (ε) in (τ1, τ2), such that

δ (ε, τ∗ (ε)) = πx (qu (ε, τ∗ (ε))− qs (ε, τ∗ (ε))) = 0,

hence the manifolds intersect at qu (ε, τ∗ (ε)) = qs (ε, τ∗ (ε)) .
We now prove the transversality. As a consequence of the transversality we

obtain the uniqueness of q(e). Let us fix e ∈ E \ {0}. Observe that since

∂

∂τ
δ (e, τ) = e

∫ 1

0

∂2

∂τ∂ε
δ (xe, τ) dx 6= 0, τ ∈ (τ1, τ2)

the intersection parameter τ∗(ε) is uniquely defined. Let q(e) denotes the inter-
section point

q(e) = qu(e, τ∗(e)) = qs(e, τ∗(e)).

We consider the transversality in the coordinates y, x, s.
Let w = f (q (e)). Since q (e) ∈W s (Λ) ∩Wu (Λ), we have

w ∈ Tq(e)W s (Λ) and w ∈ Tq(e)Wu (Λ) .
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Since the intersections of W s (Λ) and Wu (Λ) with Σ are transversal, and since
Σ = {y = 0} , it follows that

w =


πxw
πyw
πεw
πsw

 with πyw 6= 0, πsw = 1. (26)

We now consider additional two vectors vι ∈ Tq(e)W
ι (Λ) , for ι ∈ {s, u}

defined as

vι =
∂

∂τ
qι (e, τ) .

Since by construction πτq
ι (e, τ) = τ, πεq

ι (e, τ) = e and πyq
ι (e, τ) = 0, we have

vι =


πxv

ι

πyv
ι

πεv
ι

πτv
ι

 =


πx

∂
∂τ q

ι (e, τ)
0
0
1

 . (27)

To show transversality in the x, y, s coordinates, it is sufficient to show that

span (w, vs, vu) = R2 × {0} × R.

Looking at (26–27) we see that this will be the case if

∂

∂τ
πxq

u (e, τ)− ∂

∂τ
πxq

s (e, τ) 6= 0.

In other words, by (20) and (24), we need to show that

∂

∂τ
δ (e, τ) 6= 0.

From (25) it follows that

∂

∂τ
δ (e, τ) = e

∫ 1

0

∂2

∂τ∂ε
δ (xe, τ) dx.

From our assumptions we have that ∂2

∂τ∂εδ (ε, τ) > 0, hence from above equation

follows that ∂
∂τ δ (e, τ) 6= 0. This concludes the proof of the transversality.

Remark 10 Theorem 9 follows along the standard lines of Melnikov-type ar-
guments. The novelty is that we formulate our assumptions so that we obtain
the intersection for all ε ∈ E \ {0}, and not only for “sufficiently small” ε. The
main difficulty does not lie in the proof of this theorem, which is straightforward,
but in the ability to verify its assumptions. The subsequent sections will be de-
voted to showing how (22) and (23) can be validated using (rigorous) computer
assisted computations.

14



3.2 Verification of assumptions

To apply Theorem 9 we need to be able to obtain bounds for ∂
∂εδ (ε, τ) and

∂2

∂τ∂εδ (ε, τ). Our objective will be to obtain such bounds using rigorous, interval-
arithmetic-based, computer assisted computations. In this section we will show
that the key are the bounds for Dwι and D2wι, where ι ∈ {u, s}, and that other
estimates follow with relative ease.

Throughout the section we use the notation ι to stand for an index from the
set {u, s}.

In our implementation we use the CAPD1 package. This package allows for
the computation of derivatives (of a prescribed order) of Poincaré maps of flows
induced by ODEs. We therefore start from a comfortable assumption that for a
given set U ⊂ R2 × E × S1 the bounds on P ι (U), DP ι (U) , and D2P ι (U) are
automatically computed by the CAPD package [26],[27].

To simplify the notation, we consider

gι (ε, τ, s) = πsP
ι (wι (rι, ε, s))− τ for ι ∈ {u, s} , (28)

Since κι (ε, τ) is a solution of

gι (ε, τ, κι (ε, τ)) = 0,

the gι will be used to find ∂κι

∂ε , ∂κι

∂τ , ∂2κι

∂τ∂ε using implicit differentiation.

Remark 11 Let us assume that ε = 0. We are then in the setting of an au-
tonomous ODE. Then τ ι (wι (rι, ε = 0, s)) = s+ ωι for some fixed ωι ∈ R, and
therefore κι (ε = 0, τ) = τ − ωι is well defined. Also, by (17),

∂

∂s
gι (ε = 0, τ, s) = 1, for any τ ∈ S1,

which means that we can apply the implicit function theorem for gι = 0 to obtain
existence of κι (ε, τ) , for sufficiently small ε ≥ 0.

We can now differentiate gι to obtain (below we omit the dependence of g
and κ on ι to simplify notations)

d

dε
g(ε, τ, κ(ε, τ)) =

∂g

∂ε
+
∂g

∂s

∂κ

∂ε
, (29)

d

dτ
g(ε, τ, κ(ε, τ)) =

∂g

∂τ
+
∂g

∂s

∂κ

∂τ
, (30)

d

dε

d

dτ
g(ε, τ, κ(ε, τ)) =

∂2g

∂ε∂τ
+

∂2g

∂ε∂s

∂κ

∂τ
+

(
∂2g

∂s∂τ
+
∂2g

∂2s

∂κ

∂τ

)
∂κ

∂ε
+
∂g

∂s

∂2κ

∂ε∂τ
.

(31)

1Computer Assisted Proofs in Dynamics: http://capd.ii.uj.edu.pl/

15



To compute ∂κι

∂ε , ∂κι

∂τ , ∂2κι

∂τ∂ε we consider

d

dε
gι(ε, τ, κι(ε, τ)) = 0, (32)

d

dτ
gι(ε, τ, κι(ε, τ)) = 0, (33)

d2

dτdε
gι(ε, τ, κι(ε, τ)) = 0. (34)

From (29) together with (32), and from (30) together with (33), we obtain

∂κι

∂ε
(ε, τ) = −

∂gι

∂ε (ε, τ, κι(ε, τ))
∂gι

∂s (ε, τ, κι(ε, τ))
, . (35)

and
∂κ

∂τ
(ε, τ) =

−∂g
ι

∂τ (ε, τ, κι(ε, τ))
∂gι

∂s (ε, τ, κι(ε, τ))
=

−1
∂gι

∂s (ε, τ, κι(ε, τ))
(36)

We note that from (28) follows that

∂2gι

∂ε∂τ
=

∂2gι

∂s∂τ
= 0.

This means that from (31),(34) we obtain

∂2κι

∂ε∂τ
=
−1
∂gι

∂s

(
∂2gι

∂ε∂s

∂κι

∂τ
+
∂2gι

∂2s

∂κι

∂τ

∂κι

∂ε

)
. (37)

To compute ∂
∂εδ (ε, τ), ∂2

∂τ∂εδ (ε, τ) we define

hι (ε, s) = P ι (wι (rι, ε, s)) , (38)

compute

d

dε
hι (ε, κι (ε, τ)) =

∂hι

∂ε
+
∂hι

∂s

∂κι

∂ε
,

d2

dτdε
hι (ε, κι (ε, τ)) =

∂2hι

∂s∂ε

∂κι

∂τ
+
∂2hι

∂s2

∂κι

∂τ

∂κι

∂ε
+
∂hι

∂s

∂2κι

∂τ∂ε
, (39)

and obtain ∂
∂εδ (ε, τ), ∂2

∂τ∂εδ (ε, τ) from the fact that

δ (ε, τ) = πxh
u (ε, κu (ε, τ))− πxhs (ε, κs (ε, τ)) . (40)

We finish this section by discussing how to solve (18–19) for κu and κs. One
possibility is to use the interval Newton method. We present how this can be
done in Appendix 8.5. In our case, since the dimension of the equations in
question is one, we use the following lemma in our computer assisted part of
the proof:
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Lemma 12 Let ι ∈ {u, s} be fixed and let A = [a1, a2]. Assume that for any
ε ∈ E, function s → πsh

ι (ε, s) is strictly increasing on A. Consider a fixed
τ ∈ S1. If

πsh
ι (ε, a1) < τ < πsh

ι (ε, a2) , (41)

then for every ε ∈ E, κι (ε, τ) ∈ A.

Proof. The result follows directly from the Bolzano’s intermediate value theo-
rem.

All computations discussed in this section can be performed in interval arith-

metic, provided that we have estimates for ∂wι

∂xj
, ∂2wι

∂xi∂xj
. How to obtain such

estimates will be discussed in section 5.

Remark 13 The method for obtaining bounds on ∂wι

∂xj
, ∂2wι

∂xi∂xj
, which is the sub-

ject of sections 4 and 5, is based on the geometric method for normally hyperbolic
invariant manifolds from [5, 6]. There are alternative methods to perform such
computation. For instance, [2] discusses how such bounds can be obtained us-
ing the parameterization method. This method can be implemented to perform
interval based validated numerical bounds. A reader who is a specialist in this
field can choose to use the parameterization method to validate assumptions of
Theorem 9. If such choice is made, the specialist can in fact stop reading this
paper at this point and most likely successfully apply our method.

4 Center-unstable manifolds for maps

In this section we recall the results from [6], which give conditions for establish-
ing the existence and smoothness of normally hyperbolic invariant manifolds,
together with their associated center-stable and cnter-unstable manifolds. Here
we focus on the cnter-unstable manifolds, since this is sufficient for our needs.
(The center-stable manifold of an ODE is the center unstable manifold for time
reversed ODE, thus knowing how to handle one of the two is enough.) The
results from [6] are recalled in sections 4.1 and 4.2.

In sections 4.3 and 4.4 we extend the results from to [6]. Section 4.3 discusses
the dependence of the manifolds on parameters. In section 4.4 we show how to
obtain explicit estimates for the second derivatives of the manifolds with respect
to parameters.

All results in this section are formulated in the setting of maps. In section
5 we reformulate them for ODEs.

4.1 Definitions and setup

We assume that Λ is a c-dimensional torus and use the notation

ϕ : Rc → Λ = (R/Z)
c
,

for its covering. This gives us the set of charts being the restriction of ϕ to balls
B in Rc, which are small enough so that ϕ : B → Λ is a homeomorphism on its
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image. We introduce a notation RΛ > 0 for a radius such that ϕ|B(λ,RΛ) is a

homeomorphism onto its image. We can for instance take Rλ = 1
2 .

Let R < 1
2RΛ and denote by D the set

D = Λ×Bu(R)×Bs(R),

where Bn(R) stands for a closed ball of radius R, centered at zero, in Rn. We
consider a Ck+1 map, for k ≥ 1,

F : D → Λ× Ru × Rs.

Here we assume that the map is considered in local coordinates that are (roughly)
well aligned with the dynamics. Throughout the section we use the notation
z = (λ, x, y) to denote points in D. This means that notation λ will stand for
points on Λ, notation x for points in Ru, and y for points in Rs. The coordi-
nate x will be the unstable direction and y will be the stable. We will write
F as (Fλ, Fx, Fy) , where Fλ, Fx, Fy stand for projections onto Λ, Ru and Rs,
respectively. On Rc × Ru × Rs we will use the Euclidian norm.

The set of points which are in the same good chart with point q ∈ D will be
denoted by

P (q) = {z ∈ D | ‖πλz − πλq‖ ≤ RΛ/2}. (42)

Let L ∈
(

2R
RΛ
, 1
)

, and let us define the following constants:

µs,1 = sup
z∈D

{∥∥∥∥∂Fy∂y (z)

∥∥∥∥+
1

L

∥∥∥∥ ∂Fy
∂(λ, x)

(z)

∥∥∥∥} ,
µs,2 = sup

z∈D

{∥∥∥∥∂Fy∂y (z)

∥∥∥∥+ L

∥∥∥∥∂F(λ,x)

∂y
(z)

∥∥∥∥} ,
ξu,1 = inf

z∈D

{
m

(
∂Fx
∂x

(z)

)
− 1

L

∥∥∥∥ ∂Fx
∂ (λ, y)

(z)

∥∥∥∥} ,
ξu,1,P = inf

z∈D
m

(
∂Fx
∂x

(P (z))

)
− 1

L
sup
z∈D

∥∥∥∥ ∂Fx
∂ (λ, y)

(z)

∥∥∥∥ ,
µcs,1 = sup

z∈D

{∥∥∥∥∂F(λ,y)

∂ (λ, y)
(z)

∥∥∥∥+ L

∥∥∥∥∂F(λ,y)

∂x
(z)

∥∥∥∥} ,
µcs,2 = sup

z∈D

{∥∥∥∥∂F(λ,y)

∂ (λ, y)
(z)

∥∥∥∥+
1

L

∥∥∥∥ ∂Fx
∂ (λ, y)

(z)

∥∥∥∥} ,
ξcu,1 = inf

z∈D

{
m

(
∂F(λ,x)

∂(λ, x)
(z)

)
− L

∥∥∥∥∂F(λ,x)

∂y
(z)

∥∥∥∥} ,
ξcu,1,P = inf

z∈D
m

(
∂F(λ,x)

∂(λ, x)
(P (z))

)
− L sup

z∈D

∥∥∥∥∂F(λ,x)

∂y
(z)

∥∥∥∥ .
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Intuitively, the constants µ measure the contraction rates in D, and ξ mea-
sure expansion. The index cs stands for the ‘center-stable’ direction, cu for
‘center-unstable’, s for ‘stable’ and u for ‘unstable’. Thus, for instance, µs,1 and
µs,2 measure contraction in the stable direction. The number 1 or 2 as second
index is used according to the following rule: 1, when both partial derivatives
are of the same component of F , while 2 is used the differentiation is done with
respect to the same block of variables of various components of f . The occa-
sional additional index P indicates that the constants are ‘more stringent’ and
defined over sets P (z) defined in (42). The constant L will turn out to be the
Lipschitz bound for the slope of center-unstable manifold.

Definition 14 We say that F satisfies rate conditions of order k ≥ 1 if ξu,1,
ξu,1,P , ξcu,1, ξcu,1,P , are strictly positive, and for all k ≥ j ≥ 1 holds

µs,1 < 1 < ξu,1,P , (43)

µcs,1
ξu,1,P

< 1,
µs,1
ξcu,1,P

< 1, (44)

µcs,2

(ξj+1
u,1

< 1,
µs,2

(ξcu,1)j+1
< 1. (45)

Intuitively, F satisfies rate conditions if the contraction on the stable co-
ordinate is stronger than the contraction on center-unstable coordinate, and
the expansion on the unstable coordinate is stronger than expansion on the
center-stable coordinate.

We introduce the following notation:

Js(z,M) = {(λ, x, y) : ‖(λ, x)− πλ,xz‖ ≤M ‖y − πyz‖} ,
Ju (z,M) = {(λ, x, y) : ‖(λ, y)− πλ,yz‖ ≤M ‖x− πxz‖} .

We shall refer to Js(z,M) as a stable cone of slope M at z, and to Ju(z,M) as
an unstable cone of slope M at z. The cones are depicted in Figures 4 and 5.

Definition 15 We say that a sequence {zi}0i=−∞ is a (full) backward trajectory
of a point z if z0 = z, and F (zi−1) = zi for all i ≤ 0.

Definition 16 We define the center-unstable set in D as

W cu = {z : there is a full backward trajectory of z in D}.

Definition 17 Assume that z ∈W cu. We define the unstable fiber of z as

Wu
z = {p ∈ D : ∃ backward trajectory {pi}0i=−∞ of p in D,

for any such backward trajectory

and any backward trajectory {zi}0i=−∞ of z in D

holds pi ∈ Ju (zi, 1/L) ∩D}.
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Figure 4: The stable cone Js(z,M) for M = 1
2 on the left, and M = 1 on the

right.

Figure 5: The stable cone Ju(z,M) for M = 1
2 on the left, and M = 1 on the

right.
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The definition Wu
z is related to cones, which is a nonstandard approach, the

standard one is through convergence rates. In Theorem 9 we shall see that our
definition implies the convergence rate as in the standard theory [12, 13].

Definition 18 We say that F satisfies backward cone conditions if the following
condition is fulfilled:

If z1, z2, F (z1), F (z2) ∈ D and F (z1) ∈ Js (F (z2), 1/L) then

z1 ∈ Js (z2, 1/L) .

Intuitively, a function satisfies backward cone conditions, if images of two
points are vertically aligned, then the points themselves are also vertically
aligned. This is a technical condition that is associated with the fact that
we do not assume invertibility of our map. In the setting of ODEs, the time
shift along the trajectory map is invertible, and for small times it is close to
identity. It will turn out that backward cone conditions are easily satisfied in
the context of ODEs.

For λ ∈ Λ we define the following sets:

Dλ = Bc (λ,RΛ)×Bu(R)×Bs(R),

D+
λ = Bc (λ,RΛ)×Bu(R)× ∂Bs(R),

D−λ = Bc (λ,RΛ)× ∂Bu(R)×Bs(R).

Definition 19 We say that F satisfies covering conditions if for any z ∈ D
there exists a λ∗ ∈ Λ, such that the following conditions hold:

For U = Ju(z, 1/L) ∩D, there exists a homotopy h

h : [0, 1]× U → Bc (λ∗, RΛ)× Ru × Rs,

and a linear map A : Ru → Ru which satisfy:

1. h0 = F |U ,

2. for any α ∈ [0, 1],

hα
(
U ∩D−πθz

)
∩Dλ∗ = ∅, (46)

hα (U) ∩D+
λ∗ = ∅, (47)

3. h1 (λ, x, y) = (λ∗, Ax, 0),

4. A (∂Bu(R)) ⊂ Ru \Bu(R).

In the above definition a reasonable choice for λ∗ will be λ∗ = πλF (z). In
fact any point sufficiently close to πλF (z) will be also good.

Intuitively, a function satisfies covering conditions if the coordinates are
topologically correctly aligned with the dynamics. The D+

λ plays the role of the
topological exit set, and D−λ of topological entry.
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4.2 Establishing center unstable manifolds for maps

In this section we present a theorem which can be used to establish existence of
center unstable manifolds for maps.

Theorem 20 [6, Theorem 16 + Remark 62] Let k ≥ 1 and F : D → Λ×Ru×Rs
be a Ck+1 map. If F satisfies covering conditions, rate conditions of order k
and backward cone conditions, then W cu is a Ck manifold, which are graphs of
a Ck function

wcu : Λ×Bu(R)→ Bs(R),

meaning that

W cu =
{

(λ, x, wcu(λ, y)) : λ ∈ Λ, x ∈ Bu(R)
}
.

Moreover, wcu is Lipschitz with constant L.
The manifold W cu is foliated by invariant fibers Wu

z , which are graphs of
Ck functions

wuz : Bu(R)→ Λ×Bs(R),

meaning that

Wu
z =

{
(πλw

u
z (x) , x, πyw

u
z (x)) : x ∈ Bu(R)

}
.

The functions wuz are Lipschitz with constants 1/L. Moreover, for C = 2R (1 + 1/L) ,

Wu
z = {p ∈W cu : F−n(p) ∈ D for all n ∈ N, (48)∥∥F−n (p)− F−n (z)

∥∥ ≤ Cξ−nu,1,P for all n ∈ N
}
.

Observe that bound on L ∈
(

2R
RΛ
, 1
)

gives us lower bounds for the Lipschitz

constants for functions wcu, wu, which is clearly an overestimate for the case
when T×{0}×{0} is an invariant manifold. This lower bound is a consequence
of choices we have made when formulating Theorem 20, as we did not want
to introduce different constants for each type of cones, plus several inequalities
between them. However, below theorem gives conditions which allow to obtain
better Lipschitz constants.

Theorem 21 [6, Theorem 18] Let M ∈ (0, 1/L) and

ξ = inf
z∈D

m

([
∂Fx
∂x

(P (z))

])
−M sup

z∈D

∥∥∥∥ ∂Fx
∂ (λ, y)

(z)

∥∥∥∥ ,
µ = sup

z∈D

{∥∥∥∥∂F(λ,y)

∂ (λ, y)
(z)

∥∥∥∥+
1

M

∥∥∥∥∂F(λ,y)

∂x
(z)

∥∥∥∥} .
If assumptions of Theorem 20 hold true and also ξ

µ > 1, then the function wuz
from Theorem 20 is Lipschitz with constant M.
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Theorem 22 [6, Theorem 19] Let M ∈ (0, L) and

ξ = inf
z∈D

m

[
∂F(λ,x)

∂(λ, x)
(P (z))

]
−M sup

z∈D

∥∥∥∥∂F(λ,x)

∂y
(z)

∥∥∥∥ ,
µ = sup

z∈D

{∥∥∥∥∂Fy∂y (z)

∥∥∥∥+
1

M

∥∥∥∥ ∂Fy
∂(λ, x)

(z)

∥∥∥∥} .
If assumptions of Theorem 20 hold true and also ξ

µ > 1, then the function wcu

from Theorem 20 is Lipschitz with constant M .

In our situation the map F will be a time shift along a trajectory of an ODE,
which is invertible. We can apply Theorem 20 to F−1, (reversing the roles of
coordinates x, y) and thus obtain the bounds for the center-stable manifold. The
intersection of the center-stable manifold with the center-unstable manifold is
the normally hyperbolic invariant manifold.

4.3 Dependence of manifolds on parameters

We consider a family of maps Fε : D → Λ×Ru×Rs with ε ∈ E. For simplicity,
we assume that E = S1. We can apply Theorem 20 to each of the maps sep-
arately and obtain a family of functions wcuε and wuz,ε for ε ∈ E. We can also

extend the map to include the parameter as follows. We first define Λ̃ = S1×Λ
and D̃ = Λ̃×Bu(R)×Bs(R) and consider

F : D̃ → Λ̃× Ru × Rs,

defined as
F (ε, λ, x, y) = (ε, Fε (λ, x, y)) .

We can then apply Theorem 20 to F . This will establish existence of a center
unstable manifold parameterized by

wcu : Λ̃×Bu(R)→ Bs(R).

Theorem 20 establishes that wcu is Lipschitz with constant L. This means that
for any (λ, x) ∈ Λ×Bu(R) and any ε1, ε2 ∈ E we have∥∥wcuε1 (λ, x)− wcuε2 (λ, x)

∥∥ = ‖wcu (ε1, λ, x)− wcu (ε2, λ, x)‖ ≤ L ‖ε1 − ε2‖ .

If assumptions of Theorem 20 are applied with k > 1, then we know that wcu is
C1, and above inequality gives us the following dependence with respect to the
parameter ∥∥∥∥ ∂∂εwcuε (λ, x)

∥∥∥∥ ≤ L.
Extending the Λ to include the parameter can also be used to establish

bounds on the second or mixed derivative of wcuε with respect to the parameter,
by using the method given in section 4.4 below.
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4.4 Bounds on second derivatives

In this section we shall show how we can obtain explicit bounds on the second
derivatives of the parameterization of the center unstable manifold established
in Theorem 20.

For the sake of simplicity, we shall use two coordinates x and y. We shall
study the bounds on the second derivative of a function y = w (x) under appro-
priate rate conditions. In applications, we can have:

• x = x, y = (λ, y) and w(x) = wuz (x);

• x = (λ, x) , y = y and w(x) = wcu (x) .

Similarly, in the case of a family of maps, which depend on parameters (as
discussed in Section 4.3), we can have:

• x = x, y = (ε, λ, y) and w(x) = wuz (x);

• x = (ε, λ, x) , y = y and w(x) = wcu (x) .

We shall assume that (x, y) ∈ Ru+s and consider F : D → Ru+s which is C3

differentiable, where D ⊂ Ru+s is the domain of F .
We assume that F is such that if v : Ru → Rs is Lipschitz with constant

L > 0, then the graph transform G (v) is well defined i.e.

G (v) = Fy ◦ (id, v) ◦ (Fx ◦ (id, v))
−1
. (49)

Assume also that for v0 (x) = 0

w = lim
n→∞

Gn (v0) . (50)

Such is the setting in the construction of w = wcu and w = wuz in [6]. In such
case, the property (50) follows from assumptions of Theorem 20; see [6, Lemma
46] and [6, Lemma 57]. In the case of w = wcu we take L = L (where L is the
constant from Theorem 20) and for w = wuz we take L = 1/L. The following
result will allow us to obtain estimates on the second derivative of w.

Theorem 23 Let L > 0 and define

ξ = inf
z∈D

(
m

(
∂Fx

∂x
(z)

)
− L

∥∥∥∥∂Fx

∂y
(z)

∥∥∥∥) ,
µ1 = sup

z∈D

(∥∥∥∥∂Fy

∂y
(z)

∥∥∥∥+
1

L

∥∥∥∥∂Fy

∂x
(z)

∥∥∥∥) ,
µ2 = sup

z∈D

(∥∥∥∥∂Fy

∂y
(z)

∥∥∥∥+ L
∥∥∥∥∂Fx

∂y
(z)

∥∥∥∥) .
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Assume that 2

ξ > 0,
µ1

ξ
< 1,

µ2

ξ2
< 1. (51)

Let

Cx =
1

2
max

p∈D,‖h‖=1
‖D2Fx(p)(h, h)‖, (52)

Cy =
1

2
max

p∈D,‖h‖=1
‖D2Fy(p)(h, h)‖. (53)

and

Cy,1 = sup
p∈D

1

2

∥∥∥∥∂2Fy

∂x2
(p)

∥∥∥∥ ,
Cy,2 = sup

p∈D

∥∥∥∥ ∂2Fy

∂x∂y
(p)

∥∥∥∥ , (54)

Cy,3 = sup
p∈D

1

2

∥∥∥∥∂2Fy

∂y2
(p)

∥∥∥∥ .
Then for any x and h holds (where it makes sense) where w is defined by (50)

w(x + h) = w(x) +Dw(x)h+ ∆y(x, h), ‖∆y(x, h)‖ ≤M‖h‖2 (55)

where

M >
(LCx + Cy)(1 + L2)

ξ2 − µ2
. (56)

One can obtain an alternative (giving tighter estimates; see Remark 24) expres-
sion for M

M >
LCx(1 + L2) + Cy,1 + Cy,2L+ Cy,3L2

ξ2 − µ2
(57)

Hence for any h ∈ Ru holds∥∥∥∥1

2
D2w (x) (h, h)

∥∥∥∥ ≤M‖h‖2.
Proof. For a s×u matrix A, M ∈ R, and a point z ∈ Ru+s we define a set (see
Figure 6)

Ju(z,A,M) = {z + (x, Ax + y) : ‖y‖ ≤M‖x‖2}. (58)

2We have the following link with the rate conditions from Definition 14: When x = (λ, x)
and y = y, then we take L = L and see that ξ = ξcu,1 ≥ ξcu,1,P , µ1 = µs,1 and µ2 = µs,2.
Hence (51) follows from the rate conditions:

µ1

ξ
=

µs,1

ξcu,1
≤

µs,1

ξcu,1,P
< 1,

µ2

ξ2
=

µs,2

ξ2cu,1
< 1.

Similarly, for x = x and y = (λ, y), we consider L = 1/L. Then ξ = ξu,1 ≥ ξu,1,P , µ1 = µcs,1,
µ2 = µcs,2, and (51) also follows from the rate conditions in a similar way.
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Figure 6: The set Ju(z,A,M) for z = (2, 1), A = 1 and M = 1
2 , in blue.

We shall look for the smallest M , such that for all z ∈ D and all ‖A0‖ ≤ L
there exists a A1 such that ‖A1‖ ≤ L and

F (Ju(z,A0,M)) ∩B(0, δ)) ⊂ Ju(F (z), A1,M), (59)

for sufficiently small δ > 0 (which might depend on z and A0).
From now on we assume that ‖A0‖ ≤ L.
Let us set

Dx =
∂Fx

∂x
(z) +

∂Fx

∂y
(z)A0,

Dy =
∂Fy

∂x
(z) +

∂Fy

∂y
(z)A0.

Observe that by the definition of ξ

m(Dx) ≥ m
(
∂Fx

∂x
(z)

)
−
∥∥∥∥∂Fx

∂y
(z)

∥∥∥∥ ‖A0‖ ≥ ξ > 0. (60)

We take
A1 = DyD

−1
x .

From (51) follows that if ‖A0‖ ≤ L, then

‖A1‖ =
∥∥DyD

−1
x

∥∥ ≤
∥∥∥∂Fy

∂x (z)
∥∥∥+

∥∥∥∂Fy

∂y (z)
∥∥∥ ‖A0‖

m
(
∂Fx

∂x (z)
)
−
∥∥∥∂Fx

∂y (z)
∥∥∥ ‖A0‖

≤ Lµ1

ξ
< L. (61)

Let h = (x, A0x + y). For z + h ∈ Ju(z,A,M), by (58), we have

‖A0x + y‖ ≤ ‖A0‖‖x‖+M‖x‖2 ≤ ‖x‖ (L+M‖x‖) .

Let (x1, ỹ) = F (z + h)− F (z) and let y1 = ỹ −A1x1. Note that

F (z + h) = F (z) + (x1, A1x1 + y1) .

26



Our goal will be to find a bound on ‖y1‖
‖x1‖2 , and to show that ‖y1‖

‖x1‖2 ≤ M. First

we need to establish a number of estimates.
We have

x1 = Fx(z + h)− Fx(z)

=
∂Fx

∂x
(z)x +

∂Fx

∂y
(z) (A0x + y) +Rx,2 (z, h)

= Dxx +
∂Fx

∂y
(z)y +Rx,2 (z, h) . (62)

From (52) we know that

‖Rx,2 (z, h)‖ ≤ Cx ‖h‖2 ≤ Cx
(
‖x‖2 + ‖A0x + y‖2

)
≤ Rx‖x‖2, (63)

where
Rx ≤ Cx(1 + (L+M‖x‖)2).

Thus ∥∥∥∥x1 −
(
Dxx +

∂Fx

∂y
(z)y

)∥∥∥∥ ≤ Rx‖x‖2.
Using mirror computations, for ỹ from (53) we obtain∥∥∥∥ỹ −

(
Dyx +

∂Fy

∂y
(z)y

)∥∥∥∥ ≤ Ry‖x‖2,
with

Ry ≤ Cy
(
1 + (L+M‖x‖)2

)
. (64)

We have another possible variants for Ry based on (54). We can compute

ỹ = Dyx +
∂Fy

∂y
(z)y +Ry,2 (z, h) , (65)

with the estimate

‖Ry,2 (z, h)‖ ≤ sup
p∈D

1

2

∥∥∥∥∂2Fy

∂x2
(p)

∥∥∥∥ ‖x‖2 + sup
p∈D

∥∥∥∥ ∂2Fy

∂x∂y
(p)

∥∥∥∥ ‖x‖ ‖y‖
+ sup
p∈D

1

2

∥∥∥∥∂2Fy

∂y2
(p)

∥∥∥∥ ‖y‖2
≤ Cy,1 ‖x‖2 + Cy,2 ‖x‖ ‖A0x + y‖+ Cy,3 ‖A0x + y‖

≤ ‖x‖2R(2)
y ,

for
R(2)
y ≤ Cy,1 + Cy,2(L+M‖x‖) + Cy,3(L+M‖x‖)2. (66)

To compute the bound for ‖y1‖
‖x1‖2 we must ensure that ‖x1‖ 6= 0. From (62)

and (63)

‖x1‖ ≥ ‖x‖
(
m(Dx)−

∥∥∥∥∂Fx

∂y

∥∥∥∥M‖x‖ −Rx‖x‖) . (67)
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Since by (60) m(Dx) > 0, we thus see that for sufficiently small ‖x‖ (how small
may depend on M) we shall have ‖x1‖ > 0.

From (62) we have

x = D−1
x x1 −D−1

x

∂Fx

∂y
(z)y −D−1

x Rx,2 (z, h)

hence by (65)

ỹ = Dy

(
D−1

x x1 −D−1
x

∂Fx

∂y
(z)y −D−1

x Rx,2 (z, h)

)
+
∂Fy

∂y
(z)y +Ry,2 (z, h)

= A1x1 +

(
−A1

∂Fx

∂y
(z) +

∂Fy

∂y
(z)

)
y

−A1Rx,2 (z, h) +Ry,2 (z, h)

which by (61) and (63) gives

‖y1‖ = ‖ỹ −A1x1‖ (68)

≤
∥∥∥∥(−A1

∂Fx

∂y
(z) +

∂Fy

∂y
(z)

)
y

∥∥∥∥
+ ‖A1‖Rx‖x‖2 +Ry‖x‖2

≤ µ2 ‖y‖+ LRx‖x‖2 +Ry‖x‖2

≤ ‖x‖2 (µ2M + LRx +Ry) .

Since by (60) m(Dx) > ξ by combining (67) and (68) we obtain

‖y1‖
‖x1‖2

≤ ‖x‖2 (µ2M + LRx +Ry)

‖x‖2
(
ξ −

∥∥∥∂Fx

∂y

∥∥∥M‖x‖ −Rx‖x‖)2

= M

µ2

ξ2 + 1
ξ2M (LRx +Ry)(

1− ‖x‖ξ
(∥∥∥∂Fx

∂y

∥∥∥M +Rx

))2 .

We want this ratio to be less than M for sufficiently small ‖x‖. Therefore we
can set ‖x‖ = 0, so we obtain the following condition

µ2

ξ2
+

1

ξ2M
(LRx +Ry) < 1.

This condition follows from (56) for Ry given by (64). For Ry = R
(2)
y , where

R
(2)
y was defined in (66), above condition follows from (57).

By our assumption (50), we know that w = limn→+∞ Gn (v0). Taking A0 = 0
we see that for any z ∈ graph (v0) and for sufficiently small δ

graph (v0) ∩B (z, δ) ⊂ Ju (z,A0,M) .
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By (59),
graph (G (v0)) ∩B (z, δ) ⊂ Ju (F (z), A1,M) .

Applying this argument inductively, for any z ∈ graph (w) , taking A = Dw (z),

graph (w) ∩B (z, δ) ⊂ Ju (z,A,M) . (69)

From (69) follows (55), which concludes our proof.

Remark 24 Observe that in the case of totally flat invariant manifold (x, 0)
we have Fy(x, y) = g(x, y)y and L could be taken as small as we want.

In such case we obtain from (56) the bound M ≈ Cy

ξ2−µ , which might be quite

large as Cy depends on
∂2Fy

∂x∂y and
∂2Fy

∂y2 , which might be nonzero even on our flat
manifold.

When using (57) we obtain M ≈ Cy,1

ξ2−µ , where Cy,1 is to be expected to be very

small, because D2
xFy(x, y) = (D2

xg(x, y))y, hence it vanishes on the invariant
manifold.

Using Theorem 23 we can obtain estimates on the partial derivatives of w
using the following lemma.

Lemma 25 Assume that ‖D2w (x) (h, h)‖ ≤ 2M‖h‖2. Then in orthogonal co-
ordinates (x1, . . . , xn) holds∥∥∥∥ ∂2w

∂xi∂xj

∥∥∥∥ ≤ 2M, i, j = 1, . . . , n.

Proof. Let us denote by W the symmetric map D2w. Let e1, . . . , en be a basis
corresponding our coordinates. Then

W (ei, ej) =
∂2F

∂xi∂xj
.

Our task is to recover the map W knowing only the behavior on the diagonal.
This is accomplished using the following identity

W (p+ q, p+ q)−W (p− q, p− q) = 4W (p, q).

Let us set p = ei + ej and q = ei − ej . Observe that ‖p‖2 = ‖q‖2 = 2. We have

4 ‖W (ei, ej)‖ ≤ ‖W (ei + ej , ei + ej)‖+ ‖W (ei − ej , ei − ej)‖

≤ 2 · 2M
√

2
2
,

which concludes our proof.
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5 Center-unstable manifolds for ODEs

In this section we show how to establish the existence of center unstable man-
ifolds for ODEs. The results will follow from the ones established for maps in
section 4. To obtain our results, we will consider the time shift map along the
solution of the ODE. Our objective though will be to reformulate the conditions
to obtain our results based on assumptions on the vector field, rather than to
integrate the ODE.

5.1 Definitions and setup

We consider an ODE
q′ = f(q) (70)

where
f : Λ× Ru × Rs → Rc × Ru × Rs.

We denote by Φ (t, q) the flow induced by (70).
We shall consider a set

D = Λ×Bu (R)×Bs (R) .

Definition 26 We define the center-unstable set of (70) in D as

W cu
loc,D = {z : Φ (t, z) ∈ D for all t < 0}.

Since the set D will remain fixed throughout the discussion, from now on
we will simplify notation by writing W cu instead of W cu

loc,D.

As in section 4.1, we consider a constant L ∈
(

2R
RΛ
, 1
)
, and define the stable

fiber analogously to Definition 17.

Definition 27 Assume that z ∈W cu. We define the unstable fiber of z as

Wu
z = {p ∈ D : Φ (t, p) ∈ Ju (Φ (t, z) , 1/L) ∩D, for all t < 0}.

Let us introduce the following constants (compare with constants from sec-
tion 4.1 for maps)

−−→µs,1 = sup
z∈D

{
l

(
∂fy
∂y

(z)

)
+

1

L

∥∥∥∥ ∂fy
∂(λ, x)

(z)

∥∥∥∥} ,
−−→µs,2 = sup

z∈D

{
l

(
∂fy
∂y

(z)

)
+ L

∥∥∥∥∂f(λ,x)

∂y
(z)

∥∥∥∥} ,
−−→
ξu,1 = inf

z∈D

{
ml

(
∂fx
∂x

(z)

)
− 1

L

∥∥∥∥ ∂fx
∂ (λ, y)

(z)

∥∥∥∥} ,
−−−→
ξu,1,P = inf

z∈D
ml

(
∂fx
∂x

(P (z))

)
− 1

L
sup
z∈D

∥∥∥∥ ∂fx
∂ (λ, y)

(z)

∥∥∥∥ ,
30



−−→µcs,1 = sup
z∈D

{
l

(
∂f(λ,y)

∂ (λ, y)
(z)

)
+ L

∥∥∥∥∂f(λ,y)

∂x
(z)

∥∥∥∥} ,
−−→µcs,2 = sup

z∈D

{
l

(
∂f(λ,y)

∂ (λ, y)
(z)

)
+

1

L

∥∥∥∥ ∂fx
∂ (λ, y)

(z)

∥∥∥∥} ,
−−→
ξcu,1 = inf

z∈D

{
ml

(
∂f(λ,x)

∂(λ, x)
(z)

)
− L

∥∥∥∥∂f(λ,x)

∂y
(z)

∥∥∥∥} ,
−−−−→
ξcu,1,P = inf

z∈D
ml

(
∂f(λ,x)

∂(λ, x)
(P (z))

)
− L sup

z∈D

∥∥∥∥∂f(λ,x)

∂y
(z)

∥∥∥∥ .
The arrow is used to emphasize that the constants are computed for the vector
field.

Analogously to the case of maps (Definition 14) we define the rate conditions
for ODEs as follows.

Definition 28 We say that the vector field f satisfies rate conditions of order
k ≥ 1 if for all k ≥ j ≥ 1 holds

−−→µs,1 < 0 <
−−−→
ξu,1,P , (71)

−−→µcs,1 <
−−−→
ξu,1,P ,

−−→µs,1 <
−−−−→
ξcu,1,P , (72)

−−→µs,2 < (j + 1)
−−→
ξcu,1,

−−→µcs,2 <
−−→
ξu,1. (73)

We now define the notion of an isolating block.

Definition 29 We say that D = Λ×Bu (R)×Bs (R) is an isolating block for
(70) if

1. For any q ∈ Λ× ∂Bu (R)×Bs (R),

(πxf(q)|πxq) > 0.

2. For any q ∈ Λ×Bu (R)× ∂Bs (R),

(πyf(q)|πyq) < 0.

Isolating blocks are important constructs in the Conley index theory [23].
Intuitively, in Definition 29 the set Λ× ∂Bu (R)× Bs (R) plays the role of the
exit set, and Λ × Bu (R) × ∂Bs (R) of the entry set. Isolating blocks will play
the same role as the covering condition for maps (Definition 19).

Theorem 30 Let k ≥ 1. Assume that f is Ck+1 and satisfies rate conditions
of order k. Assume also that D = Λ×Bu (R)×Bs (R) is an isolating segment
for f . Then the center-unstable set W cu in D is a Ck manifold, which satisfies
the properties listed in Theorem 20.

31



The manifold W cu is foliated by invariant fibers Wu
z , which are graphs of

Ck functions (as in Theorem 20). Moreover, for C = 2R (1 + 1/L) ,

Wu
z = {p ∈W cu : Φ (−t, p) ∈ D for all t > 0, (74)

‖Φ (−t, p)− Φ (−t, z)‖ ≤ Ce−t
−−−−→
ξu,1,P for all t > 0

}
.

Proof. The proof is given in section 5.5.
The proof of Theorem 30 will follow from Theorem 20, applied to a time shift

along the trajectory. In section 5.2 we will show how rate conditions (for maps;
as in Definition 14) follow from Definition 28 for the time shift map along the
trajectory. In section 28 we will show how the covering condition (Definition
19) follows from Definition 29. This will lead to the proof of Theorem 30 in
section 5.5.

5.2 Verification of rate conditions

We consider an ODE
z′ = f (z) , (75)

where z = (x, y) and f = (fx, fy). Consider a shift by h > 0 along the solution
of (75), which we will denote by Φ(h, z) = (Φx(h, z),Φy(h, z)). We will show
how to establish rate conditions for a map F (z) = Φ(h, z), for sufficiently small
(fixed) h.

The results obtained in this section will be applicable for the setting where:

• x = x, y = (λ, y) ,

• x = (λ, x) , y = y,

Similarly, in the case of a family of maps (as discussed in Section 4.3), which
depend on parameters, we can have:

• x = x, y = (ε, λ, y),

• x = (ε, λ, x) , y = y.

We define

−−−→
ξ (M) = inf

z∈D

{
ml

(
∂fx

∂x
(z)

)
−M

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥} ,
−−−−→
ξP (M) = inf

z∈D
ml

(
∂fx

∂x
(P (z))

)
−M sup

z∈D

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥ ,
−−−−→
µ1(M) = sup

z∈D

{
l

(
∂fy

∂y
(z)

)
+M

∥∥∥∥∂fy

∂x
(z)

∥∥∥∥} ,
−−−−→
µ2(M) = sup

z∈D

{
l

(
∂fy

∂y
(h, z)

)
+M

∥∥∥∥∂fx

∂y
(h, z)

∥∥∥∥} .
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We also consider the following quantities, which are defined for a given h > 0

ξ(h,M) = inf
z∈D

{
m

(
∂Φx

∂x
(h, z)

)
−M

∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥} ,
ξP (h,M) = inf

z∈D
m

(
∂Φx

∂x
(h, P (z))

)
−M sup

z∈D

∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥ ,
µ1(h,M) = sup

z∈D

{∥∥∥∥∂Φy

∂y
(h, z)

∥∥∥∥+M

∥∥∥∥∂Φy

∂x
(h, z)

∥∥∥∥} ,
µ2(h,M) = sup

z∈D

{∥∥∥∥∂Φy

∂y
(h, z)

∥∥∥∥+M

∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥} .
(in the application we will choose M as L or 1/L, depending on which of the
rate conditions (43–45) we wish to verify).

Below theorem can be used to establish the fact that rate conditions (see
Definition 14) hold for the time shift map Φ(h, ·).

Theorem 31 Let M,M1,M2 > 0. We have the following conditions:

1. We have

ξ(h,M) = 1 + h
−−−→
ξ(M) +O(h2) (76)

ξP (h,M) = 1 + h
−−−−→
ξP (M) +O(h2), (77)

µ1(h,M) = 1 + h
−−−−→
µ1(M) +O(h2), (78)

µ2(h,M) = 1 + h
−−−−→
µ2(M) +O(h2). (79)

2. If for j ≥ 0 −−−−−→
µ2(M1) < (j + 1)

−−−−→
ξ (M2), (80)

then for sufficiently small h0 > 0, and for any h ∈ (0, h0),

µ2(h,M1)

ξ(h,M2)j+1
< 1.

3. If
−−−−−→
µ1(M1) <

−−−−−→
ξP (M2) then for sufficiently small h0 > 0, and for any

h ∈ (0, h0),
µ1(h,M1)

ξP (h,M2)
< 1.

4. If
−−−−→
ξP (M) > 0 then for sufficiently small h0 > 0, and for any h ∈ (0, h0),

ξP (h,M) > 1.

Also
ξP (h,M) = 1 + h

−−−−→
ξP (M) +O(h2).
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5. If
−−−−→
µ1(M) < 0 then for sufficiently small h0 > 0, and for any h ∈ (0, h0),

µ1(h,M) < 1.

6. If h0 > 0 is sufficiently small, then for any h ∈ (0, h0),

ξP (h,M) > 0 and ξ (h,M) > 0.

Proof. We have

Φ(h, z) = z + hf(z) +O(h2)

∂Φ

∂z
(h, z) = I + hDf(z) +O(h2),

D2
zΦ(h, z) = hD2f(z) +O(h2). (81)

where the O(h2) are uniform in z for z ∈ D.
Using (7) and Lemma 8 we obtain

m

(
∂Φx

∂x
(h, z)

)
= m

(
I + h

∂fx

∂x
+O(h2)

)
= 1 + hml

(
∂fx

∂x
(z)

)
+O(h2).

From (6) and Lemma 7 we obtain∥∥∥∥∂Φy

∂y
(h, z)

∥∥∥∥ =

∥∥∥∥I + h
∂fy

∂y
(z) +O(h2)

∥∥∥∥
= 1 + hl

(
∂fy

∂y
(z)

)
+O(h2).

And finally∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥ =

∥∥∥∥h∂fx

∂y
(z) +O(h2)

∥∥∥∥ = h

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥+O(h2),∥∥∥∥∂Φy

∂x
(h, z)

∥∥∥∥ =

∥∥∥∥h∂fy

∂x
(z) +O(h2)

∥∥∥∥ = h

∥∥∥∥∂fy

∂x
(z)

∥∥∥∥+O(h2).

By combining the above formulas we obtain (76–79).
We now prove the claim 2. of our theorem. Since

ξ(h,M2)j+1 =
(

1 + h
−−−−→
ξ(M2) +O(h2)

)j+1

= 1 + h (j + 1)
−−−−→
ξ (M2) +O(h2),

from (80),

µ2(h,M1) = 1 + h
−−−−−→
µ2(M1) +O(h2) <

< 1 + h (j + 1)
−−−−→
ξ (M2) +O(h2) = ξ(h,M2)j+1 +O(h2).

This establishes the claim.
Claim 3. follows from mirror arguments (taking j = 0).
The claims 4. and 5. follow from (77) and (78), respectively.
Claim 6. follows from (76) and (77).
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5.3 Verification of covering conditions

Here we show that from conditions in the definition of an isolating block follow
covering conditions for a time shift map along the trajectory of an ODE.

Theorem 32 Assume that D = Λ × Bu (R) × Bs (R) is an isolating block for
(70) and let

Ft(q) = Φ (t, q) .

If t is sufficiently small, then Ft satisfies covering conditions (see Definition
19).

Proof. We need to construct the homotopy from h from Definition 19.
Let C : (λ, x, y)→ (0, x,−y) and for α ∈

[
0, 1

2

]
let

Hα = (1− 2α) f + 2αC.

For any q ∈ Λ× ∂Bu (R)×Bs (R) ,

(πxHα (q) |πxq) = (1− 2α) (πxf (q) |πxq) + 2α (πxq|πxq) > 0, (82)

and for any q ∈ Λ×Bu (R)× ∂Bs (R)

(πyHα (q) |πyq) = (1− 2α) (πyf (q) |πyq)− 2α (πyq|πyq) < 0. (83)

Let φα(t, q) be the flow induced by q′ = Hα(q). Note that

φα=1/2(t, (λ, x, y)) =
(
λ, etx, e−ty

)
.

We shall fix a time t (where t will be sufficiently small) and define

hα (λ, x, y) =

=

{
φα(t, q) for α ∈ [0, 1

2 )
((2− 2α)λ+ (2α− 1)λ∗, etx, (2− 2α) e−ty) for α ∈ [ 1

2 , 1]
.

Let z ∈ D be a fixed point, let U = Ju(z, 1/L) ∩D be the set from Definition
19 and let z∗ = πλz. Note that for small t and α ∈ [0, 1

2 ), the hα (q) is close to
identity. This means that for sufficiently small t, for any α ∈ [0, 1]

πλU ⊂ Bc (λ∗, RΛ) .

This means that our homotopy is well defined on U , i.e.

h : [0, 1]× U → Bc (λ∗, RΛ)× Ru × Rs.

We now verify conditions 1.–4. of Definition 19. The point 1. follows
from our construction. The conditions (46) and (47) follow from (82) and (83),
respectively, provided that t is sufficiently small. Conditions 3. and 4. follow
from our definition of hα.
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5.4 Verification of backward cone conditions

In this section we show that if our vector field satisfies rate conditions, then
the time shift map along the solution of the ODE will satisfy backward cone
conditions.

For our proof we will need the following lemma:

Lemma 33 [6, Corollary 35] If a map F satisfies rate conditions (for maps; as
in Definition 14) of order k ≥ 0 then for any z ∈ D

F (Jcs (z, 1/L) ∩ (Bc (πλz,RΛ)×Bu (R)×Bs (R)) ⊂ Jcs (F (z), 1/L) ∪ {F (z)} .

We can now formulate our theorem.

Theorem 34 If f satisfies rate conditions of order k ≥ 0, then for sufficiently
small h > 0, for any t ∈ (0, h), the map Ft(z) := Φ (t, z) satisfies backward cone
conditions.

Proof. The proof is based on Lemma 33, which establishes forward invariance
of complements of Js for maps satisfying rate conditions. In the proof, these
maps will be time shifts along the trajectory of an ODE. We will also make use
of the fact that such maps are close to identity for small times.

Recall that we have chosen L ∈
(

2R
RΛ
, 1
)
. This implies that for z2 ∈ D and

z1 ∈ Js (z2, 1/L) ∩D

‖πλ (z1 − z2)‖ ≤ ‖πλ,x (z1 − z2)‖ ≤ 1

L
‖πy (z1 − z2)‖ ≤ 1

L
2R < RΛ.

In other words, for any z ∈ D

πλ (Js (z, 1/L) ∩D) ⊂ Bc (πλz,RΛ) .

Since for small t the Ft is close to identity, we can choose h small enough so
that for any t ∈ (0, h)

πλF−t(Js (z, 1/L) ∩D) ⊂ Bc (πλF−t (z) , RΛ) . (84)

Suppose that backward cone conditions do not hold. Then for any h > 0,
there exists a t ∈ (0, h) and a pair of points z1, z2, Ft(z1), Ft(z2) ∈ D satisfying

Ft(z1) ∈ Js (Ft(z2), 1/L) (85)

such that
z1 ∈ Jcs (z2, 1/L) .

By (85) and (84)

πλz1 = πλF−t (Ft(z1)) ∈ Bc (πλF−t (Ft(z2)) , RΛ) = Bc (πλz2, RΛ) ,

which since z1 ∈ Jcs (z2, 1/L) means that

z1 ∈ Jcs (z2, 1/L) ∩Bc (πλz2, RΛ)×Bu (R)×Bs (R) .

Since f satisfies rate conditions, by Theorem 31, for sufficiently small h and any
t ∈ (0, h) the map Ft will satisfy rate conditions (for maps; as in Definition 14).
This, by Lemma 33 contradicts (85). This concludes our proof.

36



5.5 Proof of the existence of the center unstable manifold

In this section we will prove the existence of the center unstable manifold and
unstable fibers, which was formulated in Theorem 30. First we need a technical
lemma:

Lemma 35 [6, Corollary 34] If a map F satisfies rate conditions of order k ≥ 0
(for maps, as in Definition 14), then for any z ∈ D

F (Ju (z, 1/L) ∩D) ⊂ intJu (F (z) , 1/L) ∪ {F (z)}

We are now ready to prove Theorem 30.
Proof of Theorem 30. Let Ft(q) = Φ (t, q). We shall write W cu (Ft) and
Wu
z (Ft) for the center unstable manifold and for the unstable fiber induced by

the map Ft, respectively. (These are in the sense of Definitions 16, 17.) We
shall also write W cu (Φ) and Wu

z (Φ) for the manifolds induced by the flow (in
the sense of Definitions 26, 27).

By Theorems 31, 32 and 34, for sufficiently small t the function Ft(q) =
Φ (t, q) satisfies assumptions of Theorem 20. We can therefore fix a small h
and apply Theorem 20 for the map Fh and obtain the center unstable manifold
W cu (Fh) and the unstable fiber Wu

z (Fh). It will turn out that if we choose h
sufficiently small, then we can show that W cu (Fh) = W cu (Φ) and Wu

z (Fh) =
Wu
z (Φ).

We first show that if h is chosen to be small, then W cu (Fh) ⊂ W cu (Φ).
Consider D+ := Λ× Bu (R)× ∂Bs (R). Since D is an isolating block, and D+

is compact, there exists a δ > 0 such that

Φ (−s, z) /∈ D for all z ∈ D+ and s ∈ (0, δ]. (86)

Let us choose h < δ. We shall show that with such choice of h, for any z ∈
W cu (Fh) we will have Φ (−t, z) ∈ D, for all t > 0. Since z ∈ W cu (Fh) , we
know that

F−nh (z) = Φ (−nh, z) ∈ D. (87)

Suppose now that for some t > 0, Φ (−t, z) /∈ D. By (87), t ∈ (− (n+ 1)h,−nh)
for some n ∈ N. Since D is an isolating block, the only possibility to leave D
going backwards in time is by passing through D+. Hence, for some τ∗ ∈ (nh, t)
there exists a z∗ = Φ (−τ∗, z) ∈ D+. We see that

Φ (−(n+ 1)h+ τ∗, z∗) = Φ (−(n+ 1)h+ τ∗,Φ (−τ∗, z)) = Φ (−(n+ 1)h, z) ∈ D,

but this contradicts (86) by taking s = (n+ 1)h− τ∗. We have thus shown that
for z ∈ W cu (Fh), Φ (t, z) ∈ D for all t < 0, hence W cu (Fh) ⊂ W cu (Φ). The
inclusion in the opposite direction is evident.

We now show that Wu
z (Fh) ⊂Wu

z (Φ). Let us consider a point p ∈Wu
z (Fh).

We will show that p ∈Wu
z (Φ). Since Wu

z (Fh) ⊂W cu (Fh) = W cu (Φ) ,

Φ (t, p) ∈ D for all t < 0.

37



We also know that since p ∈Wu
z (Fh),

F−nh (p) = Ju
(
F−nh (z) , 1/L

)
∩D. (88)

By Theorem 31, for any τ ∈ (0, h), the map Fτ satisfies rate conditions, so, by
Lemma 35 and (88),

Fτ
(
F−nh (p)

)
∈ Ju

(
Fτ
(
F−nh (z)

)
, 1/L

)
∩D.

Since Fτ
(
F−nh (·)

)
= Φ (−nh+ τ, ·) and n ∈ N, τ ∈ (0, h) are arbitrary, we

obtain
Φ (t, p) ∈ Ju (Φ (t, p) , 1/L) ∩D for all t < 0.

We have thus shown that p ∈Wu
z (Φ) , hence Wu

z (Fh) ⊂Wu
z (Φ) . The inclusion

in the opposite direction is evident.
What remains is to show (74). Let us denote by ξu,1,P (h) the constant ξu,1,P

defined for the map Fh. (See beginning of section 4.1 for the definition of ξu,1,P .)
By (77) we know that

ξu,1,P (h) = 1 + h
−−−→
ξu,1,P +O(h2).

We have shown above that for sufficiently small h, Wu
z (Fh) = Wu

z (Φ). There-
fore, by (48) from Theorem 20,

‖Φ (−t, p)− Φ (−t, z)‖ =
∥∥∥F−nt/n (p)− F−nt/n (z)

∥∥∥
≤ C

(
1 +

t

n

−−−→
ξu,1,P +O

(
t

n

)2
)−n

.

Passing to the limit with n→∞,

‖Φ (−t, p)− Φ (−t, z)‖ ≤ Ce−t
−−−−→
ξu,1,P ,

which concludes the proof of (74).

5.6 Bounds on second derivatives

In this section, for the sake of simplicity, we shall again use two coordinates
x and y. We shall study the bounds on the second derivative of a function
y = w (x) under appropriate rate conditions. In applications, we can have:

• x = x, y = (λ, y) and w(x) = wuz (x);

• x = (λ, x) , y = y and w(x) = wcu (x) .

Similarly, in the case of a family of odes, which depend on parameters, we
can have:

• x = x, y = (ε, λ, y) and w(x) = wuz (x);
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• x = (ε, λ, x) , y = y and w(x) = wcu (x) .

We shall assume that (x, y) ∈ Ru+s and consider vector field f : D → Ru+s

which is C3, where D ⊂ Ru+s is the domain of f . We consider a map F =
(Fx, Fy) = Φ (h, ·), a time shift by h along the trajectory of the flow.

We assume that F is such that if v : Ru → Rs is Lipschitz with constant L,
then the graph transform G (v) is well defined i.e.

G (v) = Fy ◦ (id, v) ◦ (Fx ◦ (id, v))
−1
.

Assume also that for v0 (x) = 0

w = lim
n→∞

Gn (v0) , (89)

for all h ∈ (0, h0]. (Such is the setting in the construction of wcu and wuz in [6].
For wcu, L = L and for wuz , L = 1/L. These properties follow from assumptions
of Theorem 30.) The following result will allow us to obtain estimates on the
second derivative of w.

Theorem 36 Let

−→
ξ = inf

z∈D
ml

(
∂fx

∂x
(z)

)
− L sup

z∈D

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥ ,
−→µ 1 = sup

z∈D
l

(
∂fy

∂y
(z)

)
+

1

L
sup
z∈D

∥∥∥∥∂fy

∂x
(z)

∥∥∥∥ ,
−→µ 2 = sup

z∈D
l

(
∂fy

∂y
(z)

)
+ L sup

z∈D

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥ .
Assume that

−→µ 1 <
−→
ξ , −→µ 2 < 2

−→
ξ . (90)

Let

−→
C x =

1

2
max

p∈D,‖v‖=1
‖D2fx(p)(v, v)‖,

−→
C y =

1

2
max

p∈D,‖v‖=1
‖D2fy(p)(v, v)‖.

and

−→
C y,1 = sup

p∈D

1

2

∥∥∥∥∂2fy

∂x2
(p)

∥∥∥∥ ,
−→
C y,2 = sup

p∈D

∥∥∥∥ ∂2fy

∂x∂y
(p)

∥∥∥∥ ,
−→
C y,3 = sup

p∈D

1

2

∥∥∥∥∂2fy

∂y2
(p)

∥∥∥∥ .
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Then for any x and v holds (where it makes sense) where w is defined by
(89)

w(x + v) = w(x) +Dw(x)v + ∆y(x, v), ‖∆y(x, v)‖ ≤M‖v‖2

where

M >
(L
−→
C x +

−→
C y)(1 + L2)

2
−→
ξ −−→µ 2

. (91)

One can obtain an alternative (giving tighter estimates; see Remark 24) expres-
sion for M

M >
L
−→
C x(1 + L2) +

−→
C y,1 +

−→
C y,2L+

−→
C y,3L2

2
−→
ξ −−→µ 2

(92)

Hence for any v ∈ Ru holds∥∥∥∥1

2
D2w (x) (v, v)

∥∥∥∥ ≤M‖v‖2.
Proof. We derive the result from Theorem 23 for time shift by h for sufficiently
small h. From the proof of Theorem 30 (in section 5.5) we know that the limit
(89) is independent of h ∈ (0, h0], provided that h0 is small enough.

Let us fix h ∈ (0, h0]. We define

ξ(h) = inf
z∈D

ml

(
∂Φx

∂x
(h, z)

)
− L sup

z∈D

∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥ ,
µ2(h) = sup

z∈D
l

(
∂Φy

∂y
(h, z)

)
+ L sup

z∈D

∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥ ,
µ1(h) = sup

z∈D
l

(
∂Φy

∂y
(h, z)

)
+

1

L
sup
z∈D

∥∥∥∥∂Φy

∂x
(h, z)

∥∥∥∥ ,
Let

Cx(h) =
1

2
max

p∈D,‖v‖=1
‖D2Φx(h, p)(v, v)‖,

Cy(h) =
1

2
max

p∈D,‖v‖=1
‖D2Φy(h, p)(v, v)‖.

and

Cy,1(h) = sup
p∈D

1

2

∥∥∥∥∂2Φy

∂x2
(p)

∥∥∥∥ ,
Cy,2(h) = sup

p∈D

∥∥∥∥∂2Φy

∂x∂y
(h, p)

∥∥∥∥ ,
Cy,3(h) = sup

p∈D

1

2

∥∥∥∥∂2Φy

∂y2
(p)

∥∥∥∥ .
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We have

Φ(h, z) = z + hf(z) +O(h2)

∂Φ

∂z
(h, z) = I + hDf(z) +O(h2),

D2
zΦ(h, z) = hD2f(z) +O(h2).

where the O(h2) are uniform in z for z ∈ D.
Using Lemma 8 we obtain

m

(
∂Φx

∂x
(h, z)

)
= m

(
I + h

∂fx

∂x
+O(h2)

)
= 1 + hml

(
∂fx

∂x
(z)

)
+O(h2).

From Lemma 7 we obtain∥∥∥∥∂Φy

∂y
(h, z)

∥∥∥∥ =

∥∥∥∥I + h
∂fy

∂y
(z) +O(h2)

∥∥∥∥
= 1 + hl

(
∂fy

∂y
(z)

)
+O(h2).

And finally∥∥∥∥∂Φx

∂y
(h, z)

∥∥∥∥ =

∥∥∥∥h∂fx

∂y
(z) +O(h2)

∥∥∥∥ = h

∥∥∥∥∂fx

∂y
(z)

∥∥∥∥+O(h2),∥∥∥∥∂Φy

∂x
(h, z)

∥∥∥∥ =

∥∥∥∥h∂fy

∂x
(z) +O(h2)

∥∥∥∥ = h

∥∥∥∥∂fy

∂x
(z)

∥∥∥∥+O(h2).

By combining the above formulas we obtain

ξ(h) = 1 + h
−→
ξ +O(h2),

µ1(h) = 1 + h−→µ 1 +O(h2),

µ2(h) = 1 + h−→µ 2 +O(h2),

Cx(h) = h
−→
C x +O(h2),

Cy(h) = h
−→
C y +O(h2),

Cy,1(h) = h
−→
C y,1 +O(h2),

Cy,2(h) = h
−→
C y,2 +O(h2),

Cy,3(h) = h
−→
C y,3 +O(h2).

From (90) and the above equalities we have for h sufficiently small

ξ(h) > 0,
µ1(h)

ξ(h)
< 1,

µ2(h)

ξ(h)2
< 1,
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hence we can apply Theorem 23 to the map F = Φ(h, ·) to obtain that

w(x + v) = w(x) +Dw(x)v + ∆y(x, v), ‖∆y(x, v)‖ ≤M(h)‖v‖2,

and ∥∥∥∥1

2
D2w (x) (v, v)

∥∥∥∥ ≤M(h)‖v‖2,

for any M(h) satisfying (based on (56)),

M(h) >
(LCx(h) + Cy(h))(1 + L2)

ξ(h)2 − µ2(h)
, (93)

or (based on (57)),

M(h) >
LCx(h)(1 + L2) + Cy,1(h) + Cy,2(h)L+ Cy,3(h)L2

ξ(h)2 − µ2(h)
.

Let us pass to the limit h→ 0 in (93). Then we have

(LCx(h) + Cy(h))(1 + L2)

ξ(h)2 − µ2(h)
=

(Lh
−→
C x +O(h2) + h

−→
C y +O(h2))(1 + L2)

(1 + h
−→
ξ +O(h2))2 − (1 + h−→µ 2 +O(h2))

=

h(L
−→
C x +

−→
C y +O(h))(1 + L2)

h(2
−→
ξ −−→µ 2 +O(h))

→ (L
−→
C x +

−→
C y)(1 + L2)

2
−→
ξ −−→µ 2

, h→ 0.

This establishes (91). The proof of (92) is analogous.

6 Example of application

We consider the following ODE

(x, y)′ = fε (x, y, t) , (94)

fε (x, y, t) =
(
y − ε cos(t)y2, x− x2

)
,

which is a perturbation of the following Hamiltonian system

q′ = J∇H,

H (x, y) =
1

2

(
y2 − x2

)
+

1

3
x3.

The unperturbed system has a homoclinic orbit to the fixed point (0, 0), which
is depicted in Figure 7.
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Figure 7: The homoclinic orbit for ε = 0.

6.1 Approximating the unstable manifold

We first consider ε = 0. After a linear change of coordinates

(x, y) = C (u, v) ,

C =

(
1 −1
1 1

)
, C−1 =

(
1
2

1
2

− 1
2

1
2

)
, (95)

the ODE becomes

(u, v)
′

= F (u, v) =

(
u− 1

2 (u− v)
2

−v − 1
2 (u− v)

2

)
.

Below we quickly describe how the unstable manifold can be approximated
using the parametrization method (for a detailed overview of the method see
[2]). We look for a function K : (−r, r)→ R2 and R : R→ R so that

F ◦K (ξ) = DK (ξ)R (ξ) . (96)

The Taylor coefficients can be computed by power matching in the equation
(96). There is a certain freedom regarding the choice of the coefficients, and we
have chosen them so that

K (ξ) = (ξ,K2 (ξ)) .

For our coordinate change we expand (96) only to powers of three and choose

K2 (ξ) = −1

6
ξ2 − 1

12
ξ3,

R (ξ) = ξ − 1

2
ξ2 − 1

6
ξ3.

The set
Wu ≈ {(ξ,K2 (ξ)) : ξ ∈ (−r, r)} , (97)

is an approximation of the unstable manifold.
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6.2 Approximating the stable manifold

In this section we also consider ε = 0. The parametrization of the stable man-
ifold follows from the reversing symmetry of the system: If we let Φt stand for
the flow, and S(x, y) = (x,−y), then

Φt (S(q)) = S (Φ−t (q)) .

This means that the stable manifold is parameterized by

ws (ξ) = S (wu (ξ)) .

For our later consideration, it will be convenient to consider coordinates in which
it the stable manifold is tangent to the x-axis. This can be obtained by taking
(see (95) for the definition of C)

T =

(
0 1
−1 0

)
, C̄ = CT =

(
1 1
−1 1

)
and computing

ws (ξ) = SC (ξ,K2 (ξ)) (98)

= C̄ (ξ,−K2 (ξ)) .

We can therefore take C̄ as the linear change of coordinates, and in these local
coordinates the stable manifold is parameterized by

ξ → (ξ,−K2 (ξ)) . (99)

6.3 Suitable change of coordinates for the unstable man-
ifold

Now we consider ε ≥ 0. We treat the system (94) in the coordinates (x, ε, t, y),

(x, ε, t, y)
′

= f (x, ε, t, y) , (100)

with the vector field

f (x, ε, t, y) =
(
y − ε cos(t)y2, 0, 1, x− x2

)
.

Observe that for each ε ≥ 0 we have the periodic orbit

Λε =
{

(0, ε, t, 0) : t ∈ S1
}
.

We go through the following change of coordinates

(x, ε, t, y) = C̃u ψu (x̄, ε, t, ȳ) , (101)
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where C̃ is a linear change, motivated by (95),

C̃u =


1 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 1

 , C̃−1
u =


1
2 0 0 1

2
0 1 0 0
0 0 1 0
− 1

2 0 0 1
2

 ,

and ψu is a nonlinear change motivated by (97),

ψu (x̄, ε, t, y) = (x̄, ε, t, ȳ +K2 (x̄)) .

The ψu is simple to invert

ψ−1
u (a, ε, t, b) = (a, ε, t, b−K2 (a)) .

Remark 37 Our change of coordinates is independent of ε. It is motivated by
the approximation of the manifold for ε = 0, which is also a good approximation
for small ε. For our method to work, the coordinates do not need to be perfectly
aligned with the dynamics. An approximate alignment is sufficient.

It is a simple task (though slightly laborious) to derive the formula for the
vector field in the local coordinates (x̄, ε, t, ȳ)

f̃ (x̄, ε, t, ȳ) =
(
f̃1 (x̄, ε, t, ȳ) , 0, 1,−K ′2 (x̄) f̃1 (x̄, ε, t, ȳ) + h̃ (x̄, ε, t, ȳ)

)
, (102)

where

f̃1 (x̄, ε, t, ȳ) = x̄− 1

2
ε (cos t) (x̄+ ȳ +K2 (x̄))

2 − 1

2
(x̄− ȳ −K2 (x̄))

2
,

h̃ (x̄, ε, t, ȳ) = −ȳ −K2 (x̄) +
1

2
ε (cos t) (x̄+ ȳ +K2 (x̄))

2 − 1

2
(x̄− ȳ −K2 (x̄))

2
.

6.4 Suitable change of coordinates for the stable manifold

The stable manifold of (100) coincides with the unstable manifold of an ODE
with reversed sign:

(x, ε, t, y)
′

= −f (x, ε, t, y) . (103)

Remark 38 We consider the formulation with reversed sign vector field, since
in all our discussions we have talked about unstable manifolds. This way we can
use our methods directly. The bounds on the unstable manifold of (103) will be
the bounds for the stable manifold for (100).

We consider the change of coordinates

(x, ε, t, y) = C̃s ψs (x̄, ε, t, ȳ) ,

with C̃s motivated by (98),

C̃s =


1 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 1

 C̃s =


1
2 0 0 − 1

2
0 1 0 0
0 0 1 0
1
2 0 0 1

2

 ,

45



and ψs motivated by (99),

ψs (x̄, ε, t, y) = (x̄, ε, t, ȳ −K2 (x̄)) ,

ψ−1
s (x̄, ε, t, y) = (x̄, ε, t, ȳ +K2 (x̄)) .

The vector field (103) rewritten in these local coordinates is

f̂ (x̄, ε, t, ȳ) =
(
f̂1 (x̄, ε, t, ȳ) , 0,−1,K ′2(x̄)f̂1 (x̄, ε, t, ȳ) + ĥ (x̄, ε, t, ȳ)

)
, (104)

with

f̂1 (x̄, ε, t, ȳ) = x̄+
1

2
ε (cos t) (−x̄+ ȳ −K2 (x̄))

2 − 1

2
(x̄+ ȳ −K2 (x̄))

2
,

ĥ (x̄, ε, t, ȳ) = −ȳ +K2 (x̄) +
1

2
ε (cos t) (−x̄+ ȳ −K2 (x̄))

2
+

1

2
(x̄+ ȳ −K2 (x̄))

2
.

6.5 Bounds on the unstable and stable manifolds

In our computer assisted proof, we have used the vector field f̃ (see (102)), to
establish the existence and bound for Wu (Λε) inside of the set

D = [−r, r]× E × S1 × [−rL(E), rL(E)] ,

for
r = 2 · 10−4,

and for various parameter intervals E. The size on the set depends through
L(E) on the range E of the parameter ε considered. For E =

[
0, 10−3

]
, which

is the first parameter interval we consider, we obtain that Theorem 30 can be

applied with constants −−→µs,1, −−→µs,2,
−−→
ξu,1,

−−−→
ξu,1,P , −−→µcs,1, −−→µcs,2,

−−→
ξcu,1 and

−−−−→
ξcu,1,P with

the following choice of the constant L:

L = L(E) = L
([

0, 10−3
])

= 6.278276608 · 10−6.

In our code, the L(E) is chosen automatically by the program to be as small as
possible to establish sharp bounds on the derivatives of wcu.

From Theorem 30 we know that the function wcu is Lipschitz with constant
L(E). Thus,

∂wcu

∂x̄
(D) ,

∂wcu

∂ε
(D) ,

∂wcu

∂t
(D) ∈ L (E) · [−1, 1].

Bounds on the second derivatives also depend on the choice of E. They can be
established using Theorem 36. For example, for E =

[
0, 10−3

]
, we obtained

M = M(E) = 1. 127 1× 10−3.

Thus, for ε ∈
[
0, 10−3

]
,

∂2wcu

∂v∂w
(D) ∈ 2M · [−1, 1] for v, w ∈ {x̄, ε, t}.
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The bounds can then be transported through the change of coordinates
(101). This is done automatically by the CAPD library, which has an imple-
mentation of rigorous manipulation on jets.

Similar bounds can be obtained for the stable manifold by considering the
vector field f̂ (with reversed time) given in (104). The bounds on the slope
of the stable manifold and on the second derivatives are indistinguishable from
those of the unstable manifold, up to the accuracy which we have used above
to display results.

6.6 The transversal intersections of manifolds

We recall that by (20)

δ (ε, τ) := πxp
u (ε, τ)− πxps (ε, τ) ,

where pu and ps are defined in (21).
We first consider ε ∈

[
0, 10−3

]
. In the left hand side of Figure 8 we give a

plot of a computer assisted bound for

τ → πx
∂pu

∂ε
(ε, τ) and τ → πx

∂ps

∂ε
(ε, τ) .

For τ close to 4.6, for all ε ∈
[
0, 10−3

]
we have

πx
∂pu

∂ε
(ε, τ) > πx

∂ps

∂ε
(ε, τ) ,

hence for these τ
d

dε
δ (ε, τ) > 0.

Analogously, for the τ close to 4.8 we have d
dεδ (ε, τ) < 0. The right hand side

of Figure 8 contains the plots of

τ → πx
∂2pu

∂τ∂ε
(ε, τ) and τ → πx

∂2ps

∂τ∂ε
(ε, τ) .

For all ε ∈
[
0, 10−3

]
and the considered range of τ we have

πx
∂2pu

∂τ∂ε
(ε, τ) < 0 and πx

∂2ps

∂τ∂ε
(ε, τ) > 0,

hence
d2

dτdε
δ (ε, τ) < 0.

This way, by using Theorem 9, we obtain a proof of the transversal intersec-
tions of Wu (Λε) with W s (Λε) for ε ∈ (0, 10−3]. The computations needed for
this result took under 3 seconds on a single 3GHz Intel i7 core processor.

It turns out that the perturbation ε = 10−3 is relatively “large”. From such
parameter we can directly observe, through rigorous numerics, that Wu (Λε) and
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-0.2

-0.1
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 0.1

 0.2

 4.6  4.7  4.8

Figure 8: Left: The plot of the bounds on τ → πx
∂pu

∂ε (ε, τ) in red and τ →
πx

∂ps

∂ε (ε, τ) in blue. Right: The plot of τ → πx
∂2pu

∂τ∂ε (ε, τ) in red and τ →
πx

∂2ps

∂τ∂ε (ε, τ) in blue. In both plots we have τ on the x-axis. The bounds are
for ε ∈

[
0, 10−3

]
.

 1.49995

 1.5

 1.50005

 4.5  4.6  4.7  4.8  4.9

-0.0005

 0

 0.0005

 4.5  4.6  4.7  4.8  4.9

Figure 9: Left: The plot of τ → πxp
u (ε, τ) in red and τ → πxp

s (ε, τ) in blue.

Right: The plot of τ → ∂pu

∂τ (ε, τ) in red and τ → ∂ps

∂τ (ε, τ) in blue. We have τ
on the x-axis. The bounds are for ε ∈

[
10−3, 10−3 + 10−4

]
.

W s (Λε) intersect transversally. This can be seen by directly plotting bounds on
τ → πxp

u (ε, τ) and τ → πxp
s (ε, τ). Such bounds, for ε ∈

[
10−3, 10−3 + 10−4

]
,

are given in the left hand side plot of Figure 9. This way we establish that
Wu (Λε) and W s (Λε) intersect (see the left hand side plot in Figure 9). To
show that this intersection is transversal we consider bounds on (right plot in
Figure 9)

τ → πx
∂pu

∂τ
(ε, τ) and τ → πx

∂ps

∂τ
(ε, τ) .

These bounds establish that for the investigated range of τ , the function τ →
δ (ε, τ) is strictly decreasing. Thus, the intersection between Wu (Λε) and
W s (Λε) is transversal.

This procedure can be continued by considering other interval parameters.
We have investigated the range

[
10−3, 10−2

]
, by dicing it into 90 intervals of

length 10−4. The results are given in Figure 10, where we have highlighted the
bounds for ε ∈

[
10−3, 10−3 + 10−4

]
in black. Thus, the black part of Figure

10 corresponds to Figure 9 (only in different scale on the vertical coordinate).
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 1.4997

 1.4998

 1.4999

 1.5

 1.5001

 4.5  4.6  4.7  4.8  4.9

-0.0015
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-0.0005
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 0.0005

 0.001

 0.0015

 4.5  4.6  4.7  4.8  4.9

Figure 10: Left: The plot of τ → πxp
u (ε, τ) in red and τ → πxp

s (ε, τ) in blue.

Right: The plot of τ → πx
∂pu

∂τ (ε, τ) in red and τ → πx
∂ps

∂τ (ε, τ) in blue. We
have τ on the x-axis. The bounds are for ε ∈

[
10−3, 10−2

]
.

In gray we have highlighted the bounds for ε ∈
[
10−2 − 10−4, 10−2

]
, which was

the last of the 90 considered parameter intervals. Each of the 90 intervals took
around half a second on a single 3GHz Intel i7 core processor. (The computation
for the 90 intervals in total took 54 seconds on the single core.)

In sum, in this example we have established a computer assisted proof of
transversal intersections of Wu (Λε) and W s (Λε) for all ε ∈ (0, 10−2]. The
whole computation time required under one minute on a single processor. There
is no obstacle of course to continue such proof for larger ε. The subtle part was
how to separate from ε = 0. Once relatively far away, one can continue with
ease.
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8 Appendix

8.1 Proof of Lemma 3

Proof. It is known (see for example [18, Sec. 3]) that the limit in the definition
of logarithmic norms exists and the convergence is locally uniform with respect
to A. We will reduce our question to this.
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We have for h ∈ (0, 1] on compact sets of A’s

m(I + hA)− 1

h
=

1
‖(I+hA)−1‖ − 1

h

=

1
‖I−hA+O(h2)‖ − 1

h

≤
1

‖I−hA‖−O(h2) − 1

h

=
‖I − hA‖−1 +O(h2)− 1

h

= −‖I − hA‖ − 1

h

1

‖I − hA‖
+O(h)

→ −l(−A), h→ 0

It is known that l(A) is a convex function. Since l(−A) is convex, ml(A) is
concave.

8.2 Proof of Theorem 5

Proof. Observe that from Lemma 3 it follows that

ml(Df,W ) = − sup
x∈W

l(−Df(x)).

From Theorem 4 applied to x′ = −f(x) with initial conditions x(t) and y(t) we
obtain

‖x(0)− y(0)‖ ≤ exp

(
t sup
z∈W

l(−Df(z))

)
‖x(t)− y(t)‖.

Hence

‖x(0)− y(0)‖ exp

(
−t sup

z∈W
l(−Df(z))

)
≤ ‖x(t)− y(t)‖.

Since m(A) = −l(−A), our claim follows from the above.

8.3 Proof of Lemma 7

Proof. We have

((I + hA)x|(I + hA)x) = ((I + hA)>(I + hA)x|x)

=
((
I + h(A+A>)

)
x|x
)

+ h2(A>Ax|x)

=
((
I + h(A+A>)

)
x|x
)

+O(h2‖x‖2‖A>A‖).
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Therefore, (below we use the fact that
√

1 + x = 1 + 1
2x+O

(
x2
)
)

‖I + hA‖ = max
‖x‖=1

√
((I + hA)x|(I + hA)x))

= max
‖x‖=1

√
((I + h(A+A>))x|x) +O(h2‖A>A‖)

= max
‖x‖=1

√
1 + h((A+A>)x|x) +O(h2‖A>A‖)

= 1 +
h

2
max
‖x‖=1

((A+A>)x|x) +O(h2),

where O(h2) is uniform with respect to A ∈W . Hence by (11)

‖I + hA‖ = 1 + hmax{λ ∈ Spectrum((A+A>)/2)}+O(h2)

= 1 + hl(A) +O(h2),

which concludes the proof.

8.4 Proof of Lemma 8

Proof. The proof follows from Lemma 7. All below estimates are clearly
uniform over a compact set W and h ∈ [0, h0], for h0 which is sufficiently small
h0 = h0(W ).

We have (applying Lemma 7 in the 5th and (8) in the last line)

m(I + hA) =
1

‖(I + hA)−1‖

=
1

‖I − hA+O(h2)‖

=
1

‖I − hA‖+O(h2)

=
1

‖I − hA‖
+O(h2)

=
1

1 + hl(−A) +O(h2)
+O(h2)

= 1− hl(−A) +O(h2)

= 1 + hml(A) +O(h2),

as required.

8.5 Solving an implicit function problem in interval arith-
metic

Consider f : Rk × Rl → Rl. We wish to solve for y satisfying

f(x, y (x)) = 0.
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Consider x ∈ Rk, y0 ∈ Rl, and a cube Y =
∏l
i=1 [ai, bi] ⊂ Rl and define

N (x, y0, Y ) := y0 −
[
∂f

∂y
(x, Y )

]−1

f (x, y0) .

If N (x, y0, Y ) ⊂ Y , then by the interval Newton method y(x) ∈ Y. In practice,
we can consider a cube X ⊂ Rk, verify that N (X, y0, Y ) ⊂ Y, obtaining that
y(x) ∈ Y for all x ∈ Y . The method can be further refined by appropriate
choices of coordinates to improve the estimates (see for instance [4, section
4.1]).
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