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Abstract

We present a new tool based on cones for rigorous estimations of eigenvectors,
eigenspaces and eigenvalues of a matrix. We introduce the notion of dominated
matrix and present a theorem which shows that our method is a generalization of
the Gerschgorin theorem in the case isolated Gerschgorin disk. Our approach is
based on ideas from dynamical systems which allow us also to locate eigenspaces of
the composition of matrices.
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1 Introduction

Assume that our task is to find rigorous bounds for eigenvalues (all or some of them) and their
corresponding eigenspaces of a matrix M ∈ Rn×n. First, one usually applies some iterative
scheme, for example QR-algorithm, to obtain matrix A (almost diagonal) which is similar to
M . Then one typically applies some abstract theorem to Ã to infer the rigorous bounds on the
eigenvalues and the eigenspaces. In this paper we present a method in this direction.

The main question we try to address can be stated as follows. Assume that we have a
square matrix A which the entries (or blocks) on the diagonal ’dominate’ the off-diagonal entries
(blocks) and we want to obtain efficient computable bounds (a formula) for the spectrum and
eigenspaces of A. Regarding the bounds on the spectrum almost all of the known methods are
given by the Gerschgorin theorems and its modifications, for example the Brauer ovals [1, 7]
or the generalization of the Gerschgorin theorem to the case of multi-dimensional blocks by
Feingold and Varga [2]. Estimation of isolated eigenvectors from Gerschgorin’s results are due
to Wilkinson [8]. However, Wilkinson’s result does not give the whole eigenspace in the case of
not simple eigenvalue or a cluster of close eigenvalues. In [9], T. Yamamoto showed how find
rigorous error bounds for computed single eigenvalues and eigenvectors of real matrices on the
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basis of an existence theorem for solutions of nonlinear systems using iteration Newton’s method.
However, the Yamamoto’s approach gives no theoretical estimates for the bounds for computed
eigenvalues and eigenvectors.

In this article we propose a new method for the estimates of eigenvalues and eigenspaces. Our
approach is based on the ideas coming from the hyperbolic dynamics [6] and can be illustrated
by the following simple two-dimensional example.

Example 1.1. Consider the matrix A is defined by the formula A =

[
0 2
1 4

]
. Note that if we

take the gray cone (see Figure 1) and we start to iterate points of this cone by matrix A then
range of our cone will be reduced to the eigenspace corresponding to one of the eigenvectors of
A.

{x = (x1, x2) : |x1| ≤ |x2|}

AAA AAA AAA

Figure 1: Transformation of the cone by the matrix A.

Iterating backward (A−1) the cone {x = (x1, x2) : |x1| ≥ |x2|} we obtain second eigenspace.

This example illustrates that we can estimate eigenspace by using an invariant cone. We
started to study this problem and it turned out that using forward and backward invariant cones
we were able to give not only good bounds for eigenvectors but also for eigenvalues. In addition,
by means of this tool we can locate the eigenspaces and eigenvalues of products of many matrices.

To explain our main results we introduce some basic notations. Let ‖x‖ := max
j
|xj |. For

x = (x1, . . . , xk, . . . , xn) ∈ Rn we set

‖x‖≤k = max
i≤k
|xi| and ‖x‖>k = max

i>k
|xi|.

For linear map A : Rk × Rn−k → Rk × Rn−k we define the extension and contraction constants:

〉A〈 = inf{R ∈ R+ | ‖Ax‖ 6 R · ‖x‖ for all x ∈ Rn : ‖Ax‖≤k ≥ ‖Ax‖>k},

〈A〉 = sup{R ∈ R+ | ‖Ax‖ > R · ‖x‖ for all x ∈ Rn : ‖x‖≤k ≤ ‖x‖>k}.

We say that A is dominating if 〉A〈< 〈A〉. It turns out that composition of dominating maps is
dominating, see Proposition 2.9.

We show two main results in our paper

Main Result I [Theorem 5.2]. Let A ∈ Cn×n be a matrix with an isolated Gerschgorin disk.
Then A is dominating.

Together with the following result we get that our method is generalization of the Gerschgorin
theorem in the case of the isolated Gerschgorin disk of multiplicity one.

Main Result II [simplified version of Theorem 3.3]. Let A : Rk × Rn−k → Rk × Rn−k be
dominating. Then there exists a unique direct sum decomposition F1⊕F2 = Rn into A-invariant
subspaces F1, F2 such that

σ(A|F1) ⊂ B(0, 〉A〈), σ(A|F2) ⊂ C \B(0, 〈A〉).

Moreover, we have:

1) dimF1 = k, dimF2 = n− k,
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2) F1 ⊂ {x ∈ Rn : ‖x‖≤k ≥ ‖x‖>k} and F2 ⊂ {x ∈ Rn : ‖x‖≤k ≤ ‖x‖>k},

3) ‖A|F1
‖ ≤ 〉A〈 and ‖(A|F2

)−1‖ ≤ 〈A〉−1.

In comparison with the Gerschgorin’s theorems our method has the following advantages:

• locate spectrum and eigenspaces of a matrix when multiple eigenvalues or clusters of very
close eigenvalues are present,

• gives better estimation for isolated eigenvalues,

• allow to deal with composition of matrices.

As an illustration of the quality of the estimates produced by our method we considered the
case of the isolated eigenvalue. Assume that

A =

[
a11 A12

A21 A22

]
,

where a11 ∈ C, A12 ∈ C1×(n−1), A21 ∈ C(n−1)×1 and A22 ∈ C(n−1)×(n−1) are such that a11 does
not belong to the spectrum of A22. From the implicit function theorem it follows that, if ‖A12‖
and ‖A21‖ are sufficiently small, then A has an eigenvalue close to a11 and this eigenvalue and
the corresponding eigenvector depend analytically on A. Hence there exist analytic functions
λ(A) ∈ C and v(A) ∈ Cn, such that

Av(A) = λ(A)v(A).

Observe that if A21 = 0 or A12 = 0, then λ(A) = a11. Therefore we expect the following behavior

λ(A) = a11 +O(‖A12‖ · ‖A21‖) (1)

v(A) = (1, 0, . . . )T +O(‖A21‖). (2)

Using our approach we obtain the following bounds

|λ(A)− a11| ≤ 2‖A12‖ · ‖A21‖ · ‖(A22 − a11 · ICn−1)−1‖,
‖v(A)− (1, 0, . . . , 0)T ‖ ≤ 2‖A21‖ · ‖(A22 − a11ICn−1))−1‖ · ‖(1, 0, . . . , 0)T ‖

provided A22 − a11ICn−1 is invertible and ‖(A22 − a11 · ICn−1)−1‖−2 − 4‖A12‖‖A21‖ > 0. This is
the content of Theorem 4.3. Observe that our bounds satisfy (1) and (2).

The content of this paper can be briefly described as follows: in Section 2 we introduce
notion of cones and build the concept of dominating matrix. In Section 3 we establish the
main result: Theorem 3.3 which allow us to rigorously estimate eigenspaces and eigenvalues.
In Section 4 we develop computable estimates for the eigenvalues and eigenspaces based on the
results from the Section 3. In Section 5 we compare the proposed method with the Gerschgorin
theorem in the case of the isolated Gerschgorin disk. We show that all matrices which have
an isolated Gerschgorin disk, are dominating and if the radius of this disk nonzero, we obtain
sharper bounds. This means that our approach can be used whenever the Gerschgorin disk is
isolated. We also show examples of matrices for which we can not use the Gerschgorin theorem
since the Gerschgorin disks cannot be separated, but our method still works, see Example 5.6.

1.1 Notation

By R and C we denote the sets of real, and complex numbers. The spectrum σ(A) of a square
matrix A = [aij ] ∈ Cn×n we define the collection of all eigenvalues of A, i.e.

σ(A) := {λ ∈ C : A− λI is singular}.

By ICn we mean the identity matrix of size n, while I denotes the interval J−1, 1K. For ε > 0
we put BC(0, ε) := {z ∈ C : |z| < ε}.
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2 Cones and dominating maps

In this section we introduce the basic concepts and tools of our method of invariant cones
to locate the eigenspaces and bound the spectrum for matrices. For this end we modify the
concept of cones from [5]. Our approach is strongly motivated by the methods from the theory
of hyperbolic dynamical systems, in particular by the results of Newhouse [6], who obtained
conditions for hyperbolic splitting on compact invariant set for a diffeomorphism in terms of its
induced action on a cone-field and its complement.

Definition 2.1. By a cone-space we understand a finite dimensional Banach space E with semi-
norms 〉 · 〈 (we call it contracting), 〈·〉 (which we call expanding) such that

9x9 := max( 〉x〈, 〈x〉)

defines an equivalent norm on E. By the r-norm for r > 0 on the cone-space E we take

9x9r := max( 〉x〈, r · 〈x〉).

Definition 2.2. Let E be a cone-space. We define the r-contracting cone in E by

〉E〈r := {x ∈ E : 〉x〈≥ r〈x〉},

and the r-expanding cone in E by

〈E〉r := {x ∈ E : 〉x〈≤ r〈x〉}.

Note that
E = 〉E〈r∪〈E〉r. (3)

In the same way we define r-contracting cone and r-expanding cone in subspace of E. If r = 1 we
will omit the subscript r, in particular we speak of contracting cone. We introduce the scaling
by r of semi-norms to have a better control over size of the cones (see Figure 2), which will
consequently allow us to better locate the eigenvectors.

(a) The contracting cone in R× R. (b) The 2-contracting cone in R×R.
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(c) The expanding cone in R× R. (d) The 2-expanding cone in R×R.

Figure 2: The cones in the cone-space R× R.

If E has a fixed product structure E = E1×E2, we introduce a natural cone-space structure
on E by defining seminorms

〉x〈:= ‖x1‖, 〈x〉 := ‖x2‖ for x = (x1, x2) ∈ E1 × E2.

In the proof of our main result, Theorem 3.3, the following proposition will play a crucial
role.

Proposition 2.3. Let E = E1 × E2 be a cone-space and let r > 0 be given. Assume that we
have direct sum decomposition E = V1 ⊕ V2 such that

V1 ⊂〉E〈r and V2 ⊂ 〈E〉r.

Then dimV1 = dimE1 and dimV2 = dimE2.

Proof. Let n := dimE1 and m := dimE2. First we show that dimV1 ≤ n. For an indirect
proof, assume that dimV1 > n. Then there exist linearly independent vectors v1, . . . , vn+1 ∈ V1.
Obviously vi = (wi, zi) for i ∈ {1, . . . , n+ 1} and unique wi ∈ E1, zi ∈ E2. Since w1, . . . , wn+1 ∈
E1 and dimE1 = n there exist a set of n+ 1 scalars, α1, . . . , αn+1, not all zero, such that

α1w1 + . . .+ αn+1wn+1 = 0.

Note that
z := α1z1 + . . .+ αn+1zn+1 6= 0,

because otherwise the vectors v1, . . . , vn+1 would not be linearly independent. Consequently we
obtain

(0, z) =

(
n+1∑
i=1

αiwi,

n+1∑
i=1

αizi

)
∈ V1 ⊂〉E〈r,

and thus r‖z‖ ≤ ‖0‖, which implies that z = 0. We get a contradiction with the fact the sequence
of vectors v1, . . . , vn+1 is linearly independent.

The proof that dimV2 ≤ m is analogous. Finally, since dimE = n + m and dimV1 ≤ n,
dimV2 ≤ m we obtain

dimV1 = n, and dimV2 = m.

By an operator we mean a linear mapping between cone-spaces E and F . We denote the
space of all operators by L(E,F ). If F = E, we denote L(E,E) by L(E).

Let A ∈ L(E,F ). We define

〉A〈r := inf{R ∈ R+ | 9Ax9r 6 R 9 x 9r for all x ∈ E : Ax ∈ 〉F〈r}, (4)

〈A〉r := sup{R ∈ R+ | 9Ax9r > R 9 x 9r for all x ∈ E : x ∈ 〈E〉r}. (5)

The following lemma is obvious.
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Lemma 2.4. Let A ∈ L(E,F ).

〉A〈r = (inf{9x 9r |Ax ∈ 〉F〈r, 9Ax9r = 1})−1 when A is invertible, (6)

〈A〉r = inf{9Ax 9r | x ∈ 〈E〉r, 9x9r = 1}. (7)

Remark 2.5. Observe, that

9Ax9r 6 〉A〈r9x9r for x ∈ A−1 〉F〈r,

9Ax9r > 〈A〉r 9 x9r for x ∈ 〈E〉r.

The above definitions of 〉A〈r and 〈A〉r are modifications of analogous notions in [6], where 〈A〉
is called the expansion rate and 1/〉A〈 is the co-expansion rate. Using of those rates we can
generalize the classical dominating maps which are relevant to our research.

Definition 2.6. We say that A ∈ L(E,F ) is r-dominating, if

〉A〈r< 〈A〉r.

By Dr(E,F ) we denote the set of all A ∈ L(E,F ) which are r-dominating. If F = E, we denote
the space Dr(E,E) by Dr(E).

Observation 2.7. Let Ẽ ⊂ E, F̃ ⊂ F be subspaces and let A ∈ L(E,F ) be such that A(Ẽ) ⊂ F̃ .
Then A|Ẽ ∈ L(Ẽ, F̃ ) and

〉A|Ẽ〈r≤〉A〈r and 〈A〉r ≤ 〈A|Ẽ〉r.

Moreover, if A ∈ Dr(E,F ) then A ∈ Dr(Ẽ, F̃ ).

Proof. It is a consequence of (4), (5) and Definition 2.6.

It turns out that r-cones are invariant for r-dominant operators.

Theorem 2.8. Let A ∈ Dr(E,F ) and let v ∈ E be arbitrary. Then

v ∈ 〈E〉r =⇒ Av ∈ 〈F 〉r,

Av ∈ 〉F〈r =⇒ v ∈ 〉E〈r.

Proof. The proof is a simple modification of the proof of [5, Proposition 2.1].

As a consequence of the above theorem we obtain that composition of r-dominating maps is
r-dominating. Moreover, we get estimate for expansion and contraction rates.

Proposition 2.9. Let A ∈ Dr(F,G) and B ∈ Dr(E,F ). Then A ◦B ∈ Dr(E,G) and

〉A ◦B〈r≤〉A〈r· 〉B〈r, 〈A ◦B〉r ≥ 〈A〉r · 〈B〉r. (8)

Proof. To prove the first inequality from (8), consider an x ∈ E such that (A ◦ B)(x) ∈ 〉G〈r.
From (4) and Theorem 2.8 we know that Bx ∈ 〉F〈r, and thus we have

9A ◦B(x)9r ≤〉A〈r· 9Bx9r ≤〉A〈r· 〉B〈r· 9 x 9r .

Hence
〉A ◦B〈r≤〉A〈r· 〉B〈r.

Using (5) and Theorem 2.8, we obtain the second inequality from (8).
As a simple consequence of (8) we obtain A ◦B ∈ Dr(E,G).
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In the remainder of this section we show how to estimate 〉A〈r, 〈A〉r. Consider two cone-
spaces E = E1 × E2 and F = F1 × F2. Let A : E → F be an operator given in the matrix form
by

A =

[
A11 A12

A21 A22

]
.

By

9A9r := max
(
‖A11‖+

1

r
‖A12‖, r‖A21‖+ ‖A22‖

)
we define the r-norm of operator A, where ‖.‖ is an operator norm. Observe that it satisfies

9Ax9r ≤ 9A 9r · 9 x 9r for x ∈ E.

Note that in general it is not (except for the case when E1 is one dimensional) the operator norm
for 9 · 9r.

Theorem 2.10. Let A = [Aij ]1≤i,j≤2 ∈ L(E1 × E2, F1 × F2) and r ∈ (0,∞) be given.

1) We have

〉A〈r≤ ‖A11‖+
1

r
‖A12‖.

2) Additionally, if A22 is invertible, then

〈A〉r ≥ ‖A−122 ‖−1 − r‖A21‖.

Proof. For the proof of the first inequality, we take x = (x1, x2) ∈ E1 × E2 such that Ax ∈ 〉F〈r.
From Definition 2.2 we have

‖A11x1 +A12x2‖ ≥ r‖A21x1 +A22x2‖, (9)

and therefore

9Ax9r = max(‖A11x1 +A12x2‖, r‖A21x1 +A22x2‖)
by (9)

= ‖A11x1 +A12x2‖ ≤ ‖A11‖ · ‖x1‖+
1

r
‖A12‖ · r‖x2‖

≤ (‖A11‖+
1

r
‖A12‖) · 9x 9r .

For the proof of the second inequality, suppose that x = (x1, x2) ∈ 〈E〉r, where x1 ∈ E1,
x2 ∈ E2. Then

‖x1‖ ≤ r‖x2‖ = 9x 9r . (10)

We know that
‖A22x2‖ ≥ ‖A−122 ‖−1‖x2‖ ≥ 0. (11)

Finally, we obtain

9Ax9r ≥ r‖A21x1 +A22x2‖ ≥ r‖A22x2‖ − r‖A21x1‖
by (11)

≥ r‖A−122 ‖−1‖x2‖ − r‖A21‖‖x1‖
by (10)

≥
(
‖A−122 ‖−1 − r‖A21‖

)
· 9x 9r .

Example 2.11. Let us verify that the matrix A ∈ L(C×C,C×C), A =

[
2 1.5
1 5

]
is dominating.

By Theorem 2.10 we have 〉A〈≤ 3.5 < 4 ≤ 〈A〉, and therefore A is dominating.

Let us stress that the estimates from Theorem 2.10 are sharp, but there are cases when we
do not have equalities in them.
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Example 2.12. Let A ∈ L(C× C,C× C) be given by the formula A =

[
2 3
2 5

]
. We show that

A is dominating. Observe that Theorem 2.10 does not allow us to decide whether this matrix A
is dominating, since

〉A〈≤ ‖A11‖+ ‖A12‖ = 5 and 〈A〉 ≥ ‖A−122 ‖−1 − ‖A21‖ = 3.

We calculate exactly 〉A〈 and 〈A〉 (we take the norm ‖ · ‖∞) from the formulas (6) and (7). The
minimum of (7) is realized in points (1,−1)T and (−1, 1)T . It is easy to see that the matrix A
is invertible, so minimum of (6) is realized in points ( 1

2 , 0)T and (− 1
2 , 0)T . Hence

〉A〈= 2 and 〈A〉 = 3.

Finally, we obtain that A is dominating. Observe that for this example Gerschgorin theorem
does not hold (it is impossible to separate Gerschgorin disks).

3 Localization of eigenspaces based on cones and dominat-
ing maps

In this section we show that the eigenspaces of the r-dominating operator A lie in the corre-
sponding r-cones. Moreover, we can estimate σ(A) with the help of 〉A〈r, 〈A〉r.

Lemma 3.1. Let A ∈ Dr(E). Then

λ ∈ σ(A) =⇒ |λ| ∈ [0,〉A〈r] ∪ [〈A〉r,∞). (12)

Moreover [0,〉A〈r] ∩ [〈A〉r,∞) = ∅.

Proof. Since A ∈ Dr(E) we get [0,〉A〈r] ∩ [〈A〉r,∞) = ∅.
Now we show implication (12). Let λ be an eigenvalue of A and let x ∈ E be a corresponding

eigenvector. By (3) we know that x ∈ 〉E〈r∪〈E〉r. We consider two cases. First suppose that
x ∈ 〉E〈r. Since x is an eigenvector, Ax = λx, and thus Ax ∈ 〉E〈r. By (4) we get

|λ| ≤ 〉A〈r.

Now suppose that x ∈ 〈E〉r. By (5) we get

|λ| ≥ 〈A〉r,

which completes the proof.

Let E be a finite dimensional vector space over the field C and let operator A : E → E be
given. One can easily deduce from the Jordan theorem (see also [4, Appendix to Chapter 4]
for the general case) that if σ(A) = σ1 ∪ σ2 then there is a unique direct sum decomposition
E = Eσ1 ⊕Eσ2 such that A(Eσ1) ⊂ Eσ1 , A(Eσ2) ⊂ Eσ2 and σ(A|Eσ1 ) = σ1, σ(A|Eσ2 ) = σ2. For
0 < c < d we define

E≤c := E{λ : |λ|≤c} and E≥d := E{λ : |λ|≥d}.

Theorem 3.2. Let E be a finite dimensional cone-space and let A ∈ Dr(E). Then there is a
direct sum decomposition E = E≤〉A〈r ⊕ E≥〈A〉r which satisfies

E≤〉A〈r ⊂〉E〈r, E≥〈A〉r ⊂ 〈E〉r.

Proof. From Lemma 3.1 and the comments preceding our theorem we obtain a decomposition
of E into A-invariant subspaces

E = E≤〉A〈r ⊕ E≥〈A〉r ,

such that

σ(A|E≤〉A〈r ) = {λ : |λ| ∈ [0,〉A〈r]} and σ(A|E≥〈A〉r ) = {λ : |λ| ∈ [〈A〉r,∞)}.
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Now we show E≤〉A〈r ⊂〉E〈r. Consider an arbitrary x ∈ E≤〉A〈r . The case when x = 0 is
obvious. Assume that x 6= 0. Without any loss of the generality we can assume that ‖x‖ = 1.
For an indirect proof, assume that x /∈ 〉E〈r. Then by (3) we get x ∈ 〈E〉r. Let ε > 0 be arbitrary.
From the fact that x ∈ E≤〉A〈r , we know that

lim sup
m→+∞

m

√
9A|mE≤〉A〈r9 = supσ(A|E≤〉A〈r ) ≤〉A〈r. (13)

Note that inequality (13) holds for all norms. For all x ∈ E≤〉A〈r we obtain

lim sup
m→+∞

m
√

9Amx9 ≤〉A〈r,

and thus there exists an M ∈ N such that for all m ∈ N

m ≥M ⇒ m
√

9Amx9 ≤〉A〈r+ε.

Since x ∈ 〈E〉r and from Theorem 2.8 we obtain

x ∈ 〈E〉r ⇒ Ax ∈ 〈E〉r ⇒ · · · ⇒ Amx ∈ 〈E〉r.

Using (5) and Remark 2.5 we get

9Ax9 ≥ 〈A〉r 9 x9,

9A2x9 = 9A(Ax)9 ≥ 〈A〉r 9Ax9 ≥ 〈A〉2r 9 x9,
...

9Amx9 ≥ 〈A〉mr 9 x 9 .

Finally we have
〈A〉r = m

√
〈A〉mr ≤

m
√

9Amx9 ≤〉A〈r+ε.
Since ε was arbitrary, we get a contradiction with the fact that A is r-dominating.

Analogously, to prove inclusion E≥〈A〉r ⊂ 〈E〉r, assume that x ∈ E≥〈A〉r and x /∈ 〈E〉r.
Then x ∈ 〉E〈r. Since σ(A|E≥〈A〉r ) = σ≥〈A〉r := {λ : |λ| ≥ 〈A〉r} and 0 /∈ σ≥〈A〉r we know that
A|E≥〈A〉r : E≥〈A〉r → E≥〈A〉r is invertible. Let ε > 0 be arbitrary. Using the fact that x ∈ E≥〈A〉r ,
by dual result (13), we know that

lim sup
m→+∞

m

√
9A|−mE≥〈A〉r x9 ≤ 〈A〉

−1
r ,

and thus there exists an M ∈ N such that for all m ∈ N

m ≥M ⇒ m

√
9A|−mE≥〈A〉r x9 ≤ 〈A〉

−1
r + ε. (14)

From the Observation 2.7 and Theorem 2.8 we get

x ∈ 〉E≥〈A〉r〈r⇒ A|−1E≥〈A〉r x ∈ 〉E≥〈A〉r〈r⇒ · · · ⇒ A|−mE≥〈A〉r x ∈ 〉E≥〈A〉r〈r,

and from (4) and Remark 2.5 we have

9x9 ≤〉A|E≥〈A〉r〈r9A|
−1
E≥〈A〉r

x9,

9A|−1E≥〈A〉r x9 ≤〉A|E≥〈A〉r〈r9A|
−2
E≥〈A〉r

x9,

...

9A|−m+1
E≥〈A〉r

x9 ≤〉A|E≥〈A〉r〈r9A|
−m
E≥〈A〉r

x 9 .

Hence
9 x9 ≤ ( 〉A|E≥〈A〉r〈r)

m 9A|−mE≥〈A〉r x 9 . (15)

Finally from the Observation 2.7 and (14), (15) we obtain

〉A〈r≥〉A|E≥〈A〉r〈r=
m

√
( 〉A|E≥〈A〉r〈r)m ≥ m

√
1

9A|−mE≥〈A〉r x9
≥ 1

〈A〉−1r + ε
= 〈A〉r ·

1

1 + ε · 〈A〉r
,

which gives a contradiction with the fact that A is r-dominating.
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Now we are ready to state the main result on the eigenspaces and eigenvalue location using
our method of cones and dominating maps.

Theorem 3.3. Let E = E1 × E2 be a finite dimensional cone-space and let A ∈ Dr(E). Then
there exists a unique direct sum decomposition E = F1⊕F2 of A-invariant subspaces F1, F2 such
that

σ(A|F1
) ⊂ B(0, 〉A〈r), σ(A|F2

) ⊂ C \B(0, 〈A〉r).

Moreover, we have:

1) dimF1 = dimE1, dimF2 = dimE2,

2) F1 ⊂〉E〈r and F2 ⊂ 〈E〉r,

3) ‖A|F1
‖ ≤ 〉A〈r and ‖(A|F2

)−1‖ ≤ 〈A〉−1r .

Proof. From Theorem 3.2 we know that exists a unique direct sum decomposition E = E≤〉A〈r ⊕
E≥〈A〉r which satisfies

E≤〉A〈r ⊂〉E〈r, E≥〈A〉r ⊂ 〈E〉r.

We take F1 = E≤〉A〈r and F2 = E≥〈A〉r . By Proposition 2.3 we obtain dimF1 = dimE1 and
dimF2 = dimE2.

Now we show that σ(A|F1) ⊂ B(0, 〉A〈r). Let x ∈ F1 be an eigenvector of A and let λ be the
eigenvalue of A corresponding to x. Since x is an eigenvector (Ax = λx) and F1 ⊂〉E〈r therefore
Ax ∈ 〉E〈r. By (4) we obtain that |λ| ≤ 〉A〈r, so we get σ(A|F1

) ⊂ B(0, 〉A〈r).
Now suppose that x ∈ F2. Since F2 ⊂ 〈E〉r and by (5) we get |λ| ≥ 〈A〉r. Hence σ(A|F2

) ⊂
C \B(0, 〈A〉r).

The inequalities of item 3) we obtain from (4) and (5).

As a direct consequence of the above theorem we obtain the following conclusion.

Corollary 3.4. Let r ∈ (0,∞) and n ∈ N. Assume that an operator A ∈ Dr(C × Cn−1)
is given. Then there exists unique eigenvalue λ of A such that |λ| ≤ 〉A〈r and the eigenspace
corresponding to λ is one-dimensional. The unique (after rescaling) eigenvector x corresponding
to the eigenvalue λ satisfies

x ∈ (1, 0, . . . , 0)T + {0} ×BC(0, 1/r)n−1 ⊂ (1, 0, . . . , 0)T +
1

r
· (0, I, . . . , I)T +

1

r
· (0, I, . . . , I)T i.

Proof. It is a direct consequence of Theorem 3.3 and Definition 2.2.

Because at the origin of our approach based on cones and dominating maps is the theory of
hyperbolic dynamical systems, so our method should be well suited to locate the eigenspaces and
eigenvalues of products of many matrices. In the example below we contrast our approach with a
naive approach, which tries to diagonalize a matrix obtained as a product of many matrices. The
essential feature of this example is that the matrices we multiply are known with some accuracy
only.

Example 3.5. Let the matrices Ai ∈ L(R× R), i ∈ {1, . . . , 15} be such that

Ai ∈
[
J0, 0.5K εI
εI J1.5, 2K

]
,

where ε = 0.01 and I = J−1, 1K. Consider the matrix B := A15 · . . . ·A1.
From Theorem 2.10 we obtain that Ai ∈ D(R× R) and

〉Ai〈≤ 0.5 + ε, 〈Ai〉 ≥ 1.5− ε.

From Theorem 2.8 and Proposition 2.9 we conclude that B ∈ D(R× R) and

〉B〈≤ 〉A15〈· . . . · 〉A1〈, 〈B〉 ≥ 〈A15〉 · . . . · 〈A1〉.

From Theorem 3.3 we obtain that eigenvalues λ1 and λ2 of B such that

|λ1| ≤ (0.5 + ε)15 and |λ2| ≥ (1.5− ε)15.
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Now, a naive method will ask first for a computation of B. Using interval arithmetic we
obtained

B ∈
[

J−1.45687, 1.45693K J−218.543, 218.544K
J−218.543, 218.544K J433.611, 32782.94K

]
.

However, there exists matrix B1 within the bounds given above, which has both eigenvalues
larger than 1. For example, let us consider

B1 =

[
1 100
−100 521

]
.

This matrix have the eigenvalues λ1 = 21 and λ2 = 501. Consequently, this means that none of
the methods applied to the product matrix will not give us the expected estimation |λ1| < 1 and
|λ2| > 1.

4 Estimations of the eigenvalues and eigenvectors

In this section we develop computable estimates for the eigenvalues and eigenspaces based on
the results from the previous section.

Lemma 4.1. Let A ∈ L(E1 × E2) be given such that

A :=

[
A11 A12

A21 A22

]
.

If A22 is invertible, d = ‖A−122 ‖−1 − ‖A11‖ > 0 and ∆ := d2 − 4‖A12‖‖A21‖ > 0 then

A ∈ Dr(E1 × E2) for


r ∈

(
d−
√

∆

2‖A21‖
,
d+
√

∆

2‖A21‖

)
if ‖A21‖ 6= 0

r ∈
(
‖A12‖
d

,∞
)

if ‖A21‖ = 0

.

Proof. Let a := ‖A12‖, b := ‖A11‖ and c := ‖A21‖. Making use of Theorem 2.10 it suffices to
show that

b+
a

r
< (d+ b)− cr.

Multiplying both sides of the above inequality by the positive number r we get the inequality

cr2 − dr + a < 0. (16)

If c = 0 then we get r > a
d . Suppose now that c 6= 0. Since from our assumption follows that

∆ > 0 we see inequality (16) is satisfied for

r ∈

(
d−
√

∆

2c
,
d+
√

∆

2c

)
.

Remark 4.2. Let A be an operator, which satisfies the assumptions of Lemma 4.1 (in particular
∆ > 0). Let a := ‖A12‖, b := ‖A11‖ and c := ‖A21‖ 6= 0. It is easy to see, that

d−
√

∆

2c
<

d

2c
<
d+
√

∆

2c
<
d

c
.

Therefore, if A satisfies the assumptions of Lemma 4.1 and ‖A21‖ 6= 0 and we want to find
possibly largest r for which A is r-dominating, then we can take r = d

2‖A21‖ . With this choice

we have r < rmax < 2r, where rmax is the supremum the set of r’s obtained in the above lemma,
therefore we might not be optimal, but we obtain easily manageable expression.

We present now our main result on the location of an isolated eigenvalue and its eigenspace.
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Theorem 4.3. Let A = [aij ]1≤i,j≤n ∈ L(C× Cn−1) be given in the block from by

A :=

[
A11 A12

A21 A22

]
,

where A11 = a11. Assume that A22 − a11 · ICn−1 is invertible and ‖(A22 − a11 · ICn−1)−1‖−2 −
4‖A12‖‖A21‖ > 0. Then

1) there exists a unique eigenvalue λ of A which satisfies

|λ− a11| ≤ 2‖A12‖ · ‖A21‖ · ‖(A22 − a11 · ICn−1)−1‖,

2) the eigenspace corresponding to λ is one-dimensional and there exist unique δ2, . . ., δn ∈ C,

‖(0, δ2, . . . , δn)T ‖ ≤ 2‖A21‖ · ‖(A22 − a11 · ICn−1)−1‖ · ‖(1, 0, . . . , 0)T ‖

such that (1, δ2, . . . , δn)T is the eigenvector corresponding to λ.

Proof. It is easy to see that if A21 = 0, then theorem holds. Therefore we will assume that
‖A21‖ > 0.

In order to apply Lemma 4.1 to matrix A − a11ICn we set a := ‖A12‖, c := ‖A21‖ and d =
‖(A22−a11 ·ICn−1)−1‖−1. By Lemma 4.1 and Remark 4.2 we get A−a11 ·ICn ∈ Dd/(2c)(C×Cn−1),
and from Corollary 3.4 and Theorem 2.10 we conclude that there exists a unique eigenvalue λ of
A which satisfies

|λ− a11| < 〉A− a11I〈 d
2c
≤ 1

d
2c

‖A12‖ =
2ac

d
.

From Theorem 3.3 (second point) we know that eigenspace, which contains eigenvector cor-
responding to the λ, lies in 〉C × Cn−1〈 d

2c
. Hence (see Definition 2.2) we obtain unique δ2,

. . ., δn ∈ C, ‖(0, δ2, . . . , δn)T ‖ ≤ 2‖A21‖ · ‖(A22 − a11 · ICn−1)−1‖ · ‖(1, 0, . . . , 0)T ‖ such that
(1, δ2, . . . , δn)T is the eigenvector corresponding to λ.

Let us stress here that in the proof Theorem 4.3 through Lemma 4.1 we used estimates for
〉A〈 and 〈A〉 provided by Theorem 2.10, which may fail establish that a matrix is dominating for
a dominating matrix. If this is the case we will use Theorem 3.3. This happens in Examples 5.4
and 5.5.

The following lemma shows how ‖(A− zI)−1‖−1 can be computed in arbitrary norm, when
A is close to the diagonal matrix.

Lemma 4.4. Let n ∈ N, z ∈ C and A ∈ Cn×n be given. Let A be decomposed into A = J + E
where J is a diagonal matrix and E equals zero on the diagonal. Assume that J − z · ICn is
invertible and ‖(J − z · ICn)−1‖−1 − ‖E‖ > 0. Then

‖(A− z · ICn)−1‖−1 ≥ ‖(J − z · ICn)−1‖−1 − ‖E‖.

Proof. It is well-known that for an invertible operator B we have

(B − C)−1 =

∞∑
n=0

(B−1C)nB−1 for C ∈ Cn×n : ‖C‖ < 1/‖B−1‖.

Hence, if ‖C‖ < 1/‖B−1‖, then

‖(B − C)−1‖ ≤ ‖B−1‖
1− ‖B−1‖ · ‖C‖

,

so we obtain

‖(B − C)−1‖−1 ≥ 1

‖B−1‖
(1− ‖B−1‖ · ‖C‖) =

1

‖B−1‖
− ‖C‖. (17)

From (17) applied to B = J − zICn and C = −E we get assertion of the lemma.

Now we present results about the location of the eigenspaces.
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Theorem 4.5. Let k, n ∈ N such that 0 ≤ k ≤ n and A ∈ L(Ck × Cn−k) be given in the block
from by

A :=

[
A11 A12

A21 A22

]
,

where A11 ∈ L(Ck), A12 ∈ L(Ck,Cn−k), A21 ∈ L(Cn−k,Ck) and A22 ∈ L(Cn−k). Assume that
A22 is invertible, d := ‖A−122 ‖−1 − ‖A11‖ > 0 and d2 − 4‖A12‖‖A21‖ > 0. Then there exists a
unique direct sum decomposition Ck × Cn−k = F1 ⊕ F2, such that F1 and F2 are A-invariant
subspaces F1, F2, dimF1 = k, dimF2 = n− k and

F1 ⊂
{

(x1, x2) ∈ Ck × Cn−k : ‖x2‖ ≤
2‖A21‖
d
‖x1‖

}
,

F2 ⊂
{

(x1, x2) ∈ Ck × Cn−k :
2‖A21‖
d
‖x1‖ ≤ ‖x2‖

}
.

(18)

Moreover, we have

σ(A|F1
) ⊂ B

(
0, ‖A11‖+

2‖A12‖ · ‖A21‖
d

)
, σ(A|F2

) ⊂ C \B
(

0, ‖A−122 ‖−1 −
d

2

)
. (19)

Proof. Let c := ‖A21‖. If c = 0, the assertion holds. Assume that c 6= 0. By Lemma 4.1 we get
A ∈ Dd/(2c)(Ck×Cn−k), and from Theorem 3.3 we know that exists a direct sum decomposition

Ck × Cn−k = F1 ⊕ F2 such that dimF1 = k, dimF2 = n − k and F1, F2 are invariant. The
properties (18) and (19) are consequences of Theorem 3.3 and Theorem 2.10 and Definition 2.2,
respectively.

Corollary 4.6. We use the same notation and decomposition of the matrix A as in Theorem 4.5.
Assume that for some z ∈ C matrices A11 − zICk , A22 − zICn−k are invertible and d := ‖(A22 −
zICn−k)−1‖−1−‖A11− zICk‖ > 0, d2− 4‖A12‖‖A21‖ > 0. Then there exists a unique direct sum
decomposition Ck × Cn−k = F1 ⊕ F2 into A-invariant subspaces F1, F2 such that dimF1 = k,
dimF2 = n− k and

F1 ⊂
{

(x1, x2) ∈ Ck × Cn−k : ‖x2‖ ≤
2‖A21‖
d
‖x1‖

}
,

F2 ⊂
{

(x1, x2) ∈ Ck × Cn−k :
2‖A21‖
d
‖x1‖ ≤ ‖x2‖

}
.

Moreover, we have

σ(A|F1
) ⊂ B

(
z, ‖A11 − zICk‖+

2‖A12‖ · ‖A21‖
d

)
,

σ(A|F2) ⊂ C \B
(
z, ‖(A22 − zICn−k)−1‖−1 − d

2

)
.

4.1 Gerschgorin theorems

For to the convenience of the reader, in this section we recall the Gerschgorin theorem and its
modifications.

We have a matrix A which has a block structure

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

· · · . . . . . . . . .
An1 An2 . . . Ann

 ,
where Aij are matrices and Aii are square matrices.

Let V =
⊕n

i=1 Vi, where Vi are finite dimensional vector spaces over C, and A : V → V be
decomposed into blocks Aij : Vj → Vi i, j = 1, 2, . . . , n, so that for v = v1 + · · · + vn, where
vi ∈ Vi holds

A(v1 + · · ·+ vn) =
∑
i

∑
j

Aijvj . (20)
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We define Gerschgorin disks Gi(A) for the block matrix A by

Ri(A) =
∑
j,j 6=i

‖Aij‖,

Gi(A) = {λ ∈ C : Aii − λIi exists and ‖(Aii − λIi)−1‖−1 ≤ Ri(A)}, i = 1, . . . , n,

where IVi is an identity map on Vi. If A is known from the context, then we will usually drop A
and write just Ri and Gi. Similarly, we write I instead of IVi .

Theorem below we present the generalizations of Gershgorin Theorems due to Feingold and
Varga [2].

Theorem 4.7. [2, Theorem 2]

σ(A) ⊂
n⋃
i=1

Gi.

Theorem 4.8. [2, Theorem 4] Assume that J ⊂ {1, . . . , n} is such that⋃
j∈J

Gj

 ∩
⋃
j /∈J

Gj

 = ∅.

Then the number of eigenvalues of A (counting with multiplicities) contained in

( ⋃
j∈J

Gj

)
is

equal to
∑
j∈J

dimVj.

Now we give a theorem about the location of the eigenvectors based on the Wilkinson argu-
ment [8].

Theorem 4.9. Assume that for some j ∈ {1, . . . , n}

Gj ∩Gk = ∅, for k = 1, 2, . . . , n, k 6= j.

Then if v = (v1 + · · ·+ vn) is an eigenvector corresponding to λ ∈ Gj, then ‖vk‖ ≤ ‖vj‖ for
k = 1, . . . , n.

Proof. To show that ‖vk‖ ≤ ‖vj‖ we will reason by the contradiction. Assume that for some
i 6= 0 holds ‖vi‖ ≥ ‖vk‖ for k = 1, . . . , n and ‖vi‖ > ‖vj‖. We will apply the basic argument
from the generalized Gerschgorin theorem (Theorem 4.7) to prove that λ ∈ Gi. This will lead to
a contradiction, because λ ∈ Gj , hence λ ∈ Gj ∩Gi 6= ∅.

We have

λvi = Aiivi +
∑
k 6=i

Aikvk

(λI −Aii)vi =
∑
k 6=i

Aikvk

‖(λI −Aii)−1‖−1‖vi‖ ≤
∑
k 6=i

‖Aik‖‖vk‖

‖(λI −Aii)−1‖−1 ≤
∑
k 6=i

‖Aik‖
‖vk‖
‖vi‖

≤
∑
k 6=i

‖Aik‖

hence λ ∈ Gi. We obtained the contradiction. This finishes the proof.

One of the easiest ways to improve the estimation of the eigenvalues from the Gerschgorin
theorem is through the scaling the basis of our domain. This approach is well known and can be
found in the original article of Gerschgorin [3].

Assume, that we have matrix A ∈ Cn×n and let x = (x1, . . . , xn)T ∈ Rn such that xi > 0
for all i ∈ {1, . . . , n}. With this vector x we define the matrix X ∈ Rn×n with the elements of
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x on the leading diagonal, and 0 elsewhere. Note, that the matrix X is nonsingular and matrix
X−1AX is similar to A therefore σ(X−1AX) = σ(A). If A = [aij ]1≤i,j≤n, then

X−1AX =

[
aijxj
xi

]
1≤i,j≤n

and

Gi = B
(
aii,

∑
j 6=i

|aij |xj
xi

)
for i = 1, . . . , n.

4.2 Example

In the following example we consider a matrix with multi-dimensional block for which we estimate
eigenspaces.

Example 4.10. Consider the matrix A ∈ L(C2 × C2) be given by

A =

[
A11 A12

A21 A22

]
=


0. 0.15 0.11 0.02
0.2 0. 0.1 0.05
0.01 0.025 0. 1.5
0.15 0.05 1. 0.

 .
We have ‖A11‖∞ = 0.2, ‖A12‖∞ = 0.15, ‖A21‖∞ = 0.2. From Theorem 4.5 (d = ‖(A−122 ‖−1∞ −
‖A11‖∞ = 1 − 0.2 = 0.8 > 0 and d2 − 4‖A12‖∞‖A21‖∞ = 0.52 > 0) we know that there exist
eigenspaces F1 and F2, which satisfy

F1 ⊂
{

(x1, x2) ∈ C2 × C2 : ‖x2‖ ≤ 0.5‖x1‖
}
,

F2 ⊂
{

(x1, x2) ∈ C2 × C2 : ‖x1‖ ≤ 2‖x2‖
}
.

and σ(AF1
) ⊂ B(0, 0.275), σ(AF2

) ⊂ C \B(0, 0.6) (see Figure 3b).

(a) Gerschgorin circles. (b) Estimates based on Theorem 4.5. The white
annulus in does not contain any eigenvalue.

Figure 3: Gerschgorin and our circles with approximate eigenvalues in Example 4.10.

Observe that when using the Gerschgorin theorem with one-dimensional blocks with scalings,
as described at the end of Section 4.1, we will not be able to separate the spectrum of A, because
the centers of Gerschgorin circles are located at zero.
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Now we discuss what happens when we use the generalized Gerschgorin theorems from [2].

First rescale the matrix A by X =

[
2 0
0 I

]
(we take the same rescaling as in our method, see

Remark 4.2) to get

Ã = X−1AX =

[
A11

1
2A12

2A21 A22

]
.

We use the Theorems 4.7 and 4.8 applied to the above block decomposition, and obtain the
generalized Gerschgorin disks:

G1(Ã) =

{
λ ∈ C : ‖(A11 − λI)−1‖−1∞ ≤

1

2
‖A12‖∞

}
,

G2(Ã) =
{
λ ∈ C : ‖(A22 − λI)−1‖−1∞ ≤ 2‖A21‖∞

}
.

We want to show that G1(Ã) ∩G2(Ã) = ∅. Let us we check that G1(Ã) ⊂ B(0, 0.25). We have

(A11 − λI)−1 =
1

λ2 − 0.03

[
−λ −0.15
−0.2 −λ

]
,

so we get

‖(A11 − λI)−1‖−1∞ =
|λ2 − 0.03|
0.2 + |λ|

.

For λ ∈ G1(Ã) ⊂ C we have
|λ2 − 0.03|
0.2 + |λ|

≤ 0.075.

Performing simple mathematical operations and changing the coordinate system to the polar one
we obtain

40000r4 − 15r(160r cos(2q) + 15r + 6) + 27 ≤ 0, r = |λ| ∈ [0,∞), ϕ ∈ [0, 2π).

Solving the above inequality we get

sup r =
3

80

(
1 +
√

33
)
<

21

80
.

This means that G1(Ã) ⊂ B(0, 21/80). Now we show that λ /∈ G2(Ã) for an arbitrary λ ∈
B(0, 21/80).

Indeed we have

(A22 − λI)−1 =
1

λ2 − 1.5

[
−λ −1.5
−1 −λ

]
.

It is easy to see that for λ ∈ B(0, 21/80) we have

‖(A22 − λI)−1‖∞ <
3
2 + 21

80

3
2 −

(
21
80

)2 =
3760

3053
.

Hence

‖(A22 − λI)−1‖−1∞ >
3053

3760
>

80

100
, λ ∈ G1(Ã) ⊂ B(0, 21/80).

Finally, we get G1(Ã) ∩ G2(Ã) = ∅ (see Figure 4) and therefore we obtain from Theorem 4.7
and 4.8 that two eigenvalues belong to G1(Ã) while the remaining two eigenvalues are inside
G2(Ã). As one can see, we get better estimation for eigenvalues close to 0 from generalized
Gerschgorin theorem with scaling r = 2, than from Theorem 4.5 but by generalized Gerschgorin
theorem we can not get eigenspaces.
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Figure 4: Generalized Gerschgorin circles: G1(Ã) – greater circles and G2(Ã) – smaller
ones in Example 4.10 (compare Fig. 3b).

5 Comparisons in the case of the isolated Gerschgorin disk

In this section we compare our method of cones with the Gerschgorin theorem with rescaling of
the basis, when trying to estimate an eigenvalue in an isolated Gerschgorin disk and corresponding
eigenvector. Throughout this section we will use the ‖ · ‖∞ norm.

5.1 The isolation of first Gerschgorin disk implies that the matrix A−
a11I is dominating

When applying Theorem 4.8 with the splitting C⊕Cn−1 we will have two generalized Gerschgorin
disks

G1(A) = B(a11, ‖A12‖∞) = B(a11,
∑
j 6=1

|a1j |),

G2(A) = {λ ∈ C : ‖(A22 − λI)−1‖−1∞ ≤ max
j=2,...,n

|aj1|}.

Now we develop computable bounds for G2(A).

Lemma 5.1. Let A = [aij ] ∈ Cn×n. Then

min
i

(|aii| −
∑
j 6=i

|aij |) ≤ sup{λ ∈ R | ∀x ∈ Cn ‖Ax‖∞ ≥ λ‖x‖∞}. (21)

If A is invertible, then

min
i

(|aii| −
∑
j 6=i

|aij |) ≤
1

‖A−1‖∞
. (22)

Proof. Let

S := min
i

(|aii| −
∑
j 6=i

|aij |). (23)

Let us take any x ∈ Cn, such that ‖x‖ = 1. Let i be such that |xi| = 1. We have

|(Ax)i| ≥ (|aii||xi| −
∑
j 6=i

|aij | · |xj |) ≥ (|aii| −
∑
j 6=i

|aij |) ≥ S > 0.
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Hence
‖Ax‖ ≥ S.

This establishes (21)
For the second part observe that, if A is invertible, then

sup{λ ∈ R | ∀x ∈ Cn ‖Ax‖∞ ≥ λ‖x‖∞} =
1

‖A−1‖∞
. (24)

From Lemma 5.1 it follows that

G2(A) ⊂ {λ ∈ C | min
i=2,...,n

(|aii − λ| −
∑
j 6=1,i

|aij |) ≤ max
j=2,...,n

|aj1|}

= {λ ∈ C | ∃i = 2, . . . , n |aii − λ| ≤
∑
j 6=1,i

|aij |+ max
j=2,...,n

|aj1|}.

So we see that G1(A) ∩G2(A) = ∅ if the following condition holds

|a11 − aii| >
∑
j 6=1

|a1j |+
∑
j 6=1,i

|aij |+ max
j=2,...,n

|aj1| for all i = 2, . . . , n. (25)

If we will use the classical Gerschgorin theorem, i.e. blocks are one-dimensional, then to have
G1 ∩Gi = ∅ for

|a11 − aii| > R1 +Ri =
∑
j 6=1

|a1j |+
∑
j 6=i

|aij | for all i = 2, . . . , n. (26)

Observe that in both cases we have the same Gerschgorin disk G1, so the bound for the first
eigenvalue will be the same, provided we have empty intersections with other disks. Observe
that (25) implies (26).

Now we show one of the main results of this paper, which states that if a matrix A = [aij ] has
an isolated Gerschgorin disk G1, then A−a11I is dominating (relative to the splitting C×Cn−1)
and under very mild assumptions the bound obtained from the method of cones is better that
the one from the Gershgorin theorem.

Theorem 5.2. Let A ∈ Cn×n be given by the formula

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 =

[
A11 A12

A21 A22

]
.

Assume that the matrix A satisfies inequality (26). Then the matrix A − a11I is dominating.
Moreover, we have

〉A− a11I〈 ≤
∑
j 6=1

|a1j | < 〈A− a11I〉.

and if
∑
j 6=1

|a1j | > 0, then

〉A− a11I〈 <
∑
j 6=1

|a1j |.

Proof. Without any loss of the generality we can assume that a11 = 0. Let us denote V =
C⊕ Cn−1

In order to estimate 〉A〈 we will first find a bound for the set Z of x, such that Ax ∈ 〉V 〈.
Then we will compute 〉A〈 on Z.

Let
δk = |akk| −

∑
j 6=k

|akj | −
∑
j 6=1

|a1j |. (27)
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From our assumptions it follows that

δ = min
k=2,...,n

δk > 0.

Let ε > 0 be such that
ε|ak1| < δk, k = 2, . . . , n. (28)

Assume now that x = (x1, x2) such that |x1| ≤ (1 + ε)‖x2‖∞. We will show that Ax /∈ 〉V 〈.
We can assume that ‖x2‖∞ = 1 and |xk| = 1. Then we have

|(Ax)k| ≥ |akk| −
∑

j /∈{1,k}

|akj | − (1 + ε)|ak1| = |akk| −
∑
j 6=k

|akj | − ε|ak1|

by (27)
=

∑
j 6=1

|a1j |+ δk − ε|ak1|
by (28)
>

∑
j 6=1

|a1j | ≥ ‖A12x2‖ = ‖(Ax)1‖∞.

Hence Ax /∈ 〉V 〈.
Therefore, if Ax ∈ 〉V 〈, then |x1| > (1 + ε)‖x2‖∞. In particular, we obtain

if Ax ∈ 〉V 〈, then 9 x9 = |x1| > (1 + ε)‖x2‖∞. (29)

Now we are ready to estimate 〉A〈. Let x = (x1, x2) is such that Ax ∈ 〉V 〈, then

9Ax9 = ‖A12x2‖∞ ≤ ‖A12‖∞ · ‖x2‖∞
by (29)

≤ ‖A12‖∞
9x9
1 + ε

=
1

1 + ε

∑
j 6=1

|a1j | 9 x 9 .

Hence 〉A〈 ≤
∑
j 6=1

|a1j |, but if
∑
j 6=1

|a1j | > 0, then 〉A〈 <
∑
j 6=1

|a1j |.

Now we estimate 〈A〉. We will use Lemma 2.4. Let’s take arbitrary x = (x1, x2) such that
‖x2‖∞ = 1 and |x1| ≤ 1. Let k = 2, . . . , n be such that |xk| = 1. From (26) we obtain

|(Ax)k| ≥ |akk| −
∑
j 6=k

|akj |
by (26)
>

∑
j 6=1

|a1j |.

Hence ‖Ax‖∞ >
∑
j 6=1

|a1j |. Therefore we have shown that

〈A〉 >
∑
j 6=1

|a1j |.

Remark 5.3. Observe that from Theorem 5.2 we know that our method of cones(i.e. Theo-
rem 3.3) can be used for all matrices which have an isolated Gerschgorin disk. Moreover, we
obtain

|λ− a11| ≤ 〉A− a11I〈 ≤
1

1 + ε
R1 =

1

1 + ε

∑
j 6=1

|a1j |.

This means that, if R1 (the radius of the first Gerschogorin disk) is nonzero, then the estimate
of the first eigenvalue from our method based on cones is better than the one obtained from
the Gerschgorin theorem. This is also valid for all possible rescalings in the application of the
Gerschogorin theorem, we should apply the same scaling in the method of cones.

5.2 Comparison of Theorem 4.3 with the Gerschgorin theorems

In the proof of Theorem 4.3 we applied Theorem 3.3 to the matrix A− a11I to estimate the size
of the eigenvalue, λ1, close to 0. We looked for possibly large parameter r, such that A− a11I is
r-dominating and then we obtain

|a11 − λ1| ≤ 〉A〈r≤
‖A12‖
r

.
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This is exactly G1 obtained from the Gerschgorin theorem for Ãr.
The optimization with respect of r performed in the proof of the Theorem 4.3 to obtain the

formula can be also repeated by suitable rescaling using the original Gerschgorin theorem as
long G1(Ãr) is disjoint from other Gerschgorin disks for Ãr. Therefore both approaches differ
only with the range of r’s over which the optimization can be performed. In fact we are only
interested in the upper bound for r in both methods.

Let (1, δ2, . . . , δn) be the eigenvector corresponding to λ1. We obtain from Theorem 3.2 the
bound 1 ≥ r‖(δ2, . . . , δn‖, while from Theorem 4.9 applied to Ã after returning to the original
base we have |δi| ≤ 1/r. Hence the result is the same for the method based on cones and the
Gerschgorin Theorem.

The example below demonstrates that it is possible to use the Gerschgorin theorem to iso-
late and estimate the eigenvector and eigenvalue, while assumptions of Theorem 4.3 and also
assumptions of the generalized Gerschgorin Theorems 4.7 and 4.8 are not satisfied. This appears
to contradict Theorem 5.2, but it does not, because in the proof Theorem 4.3 we used an expres-
sion for 〉A〈 from Lemma 2.10, which turns out to be an overestimation, see also Example 2.12.
By Theorem 5.2 we know that the considered matrix is dominating, hence we can estimate the
eigenpair using Theorem 3.3, see Example 5.5.

Example 5.4. Let A ∈ L(C× C2) be given by the formula

A =

[
A11 A12

A21 A22

]
=

 0 1 0
0.5 2 0
50 0 100

 .
The classical Gerschgorin disks are

G1 = B(0, 1), G2 = B(2, 0.5), G3 = B(100, 50).

It is clear that they are mutually disjoint, hence from the Gerschgorin theorem there exists an
eigenvalue λ, |λ| ≤ 1.

Now, we look at our Theorem 4.3 to estimate the eigenvalue close to 0. We have A11 = 0
and

‖A12‖∞ = 1, ‖A21‖∞ = 50, ‖(A22 −A11 · I)−1‖∞ = 0.5,

‖(A22 −A11 · I)−1‖−2∞ − 4‖A12‖ · ‖A21‖∞ = 4− 200 < 0.

Therefore assumptions of Theorem 4.3 are not satisfied.
Observe that also assumptions of the generalized Gerschgorin Theorems 4.7 and 4.8 for the

decomposition given above are not satisfied. Our generalized Gerschgorin disks are

G1(A) = B(0, 1),

G2(A) = {λ : ‖(A22 − λI)−1‖−1∞ ≤ 50}.

We have

(A22 − λI)−1 =
1

(100− λ)(2− λ)

[
100− λ 0

0 2− λ

]
,

hence
‖(A22 − λI)−1‖−1∞ = min(|2− λ|, |100− λ|).

It is easy to see that G1(A) ∩G2(A) 6= ∅, therefore we cannot use these theorems.

Rescaling: When applying our method based on cones we should look for the largest r such
that Ãr is 1-dominating and when using the Gerschgorin theorem we look for r such that G1(Ãr)
have empty intersection with others Gerschgorin circles for Ãr.

For the Gerschorin disks we need to have the following inequalities

1

r
< 2− r/2, 1

r
< 100− 50r.

We obtain sup r = 1 +
√

49
50 ≈ 2. Hence we obtain bound |λ| ≤≈ 1/2.
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For the approach based on cones we need to find largest r, such that Ãr is 1-dominating.
Using Theorem 2.10 we obtain the following condition

1

r
‖A12‖ =

1

r
< ‖A−122 ‖−1 − r‖A21‖ = 2− 50r.

Easy computations show that no such r exists in this case. Similar effect we get if we use the
generalized Gerschgorin theorem.

In the following example we show that despite the fact that the matrix A from Example 5.4
does not satisfy the assumptions of Theorem 4.3, we can use our method of cones (we apply
Theorem 3.3) to estimate the eigenvalue close to zero.

Example 5.5. Recall that A ∈ L(C× C2) of Example 5.4 was given by the formula

A =

 0 1 0
0.5 2 0
50 0 100

 .
From Theorem 5.2 we know that the matrix A is dominating, so we can estimate the eigenvalue
λ close to zero by |λ| ≤ 〉A〈 (see Theorem 3.3). From Lemma 2.4 we have

〉A〈= 1

min (‖x‖∞ for x ∈ R3 such that ‖Ax‖>1 ≤ ‖Ax‖≤1 = 1)
,

where ‖x‖≤k := max
i≤k
|xi| and ‖x‖>k := max

i>k
|xi| for x = (x1, . . . , xk, . . . , xn) ∈ Rn, see (6).

The problem to calculate this constant comes down to solve simple optimization problem.
We obtain

min
(
‖x‖∞ for x ∈ R3 such that ‖Ax‖>1 ≤ ‖Ax‖≤1 = 1

)
= 2.

This minimum is realized in the points
(
−2, 1, 99

100

)T
,
(
−2, 1, 101100

)T
,
(
2,−1,− 101

100

)T
and

(
2,−1,− 99

100

)T
.

Hence 〉A〈= 1
2 . By Theorem 3.3 we get that eigenvalue close to zero satisfies

|λ| ≤ 〉A〈= 1

2
.

The bound |λ| ≤ 1
2 can be obtained also from the Gerschgorin theorem, see Example 5.4

(’Rescaling’). Note that so far we did not improve the matrix A through the scaling X =

[
r 0
0 I

]
for r ∈ (0,∞). From Theorem 5.2 and again calculations from Example 5.4 (’Rescaling’) we

know that our method work even if we rescale our matrix A by the matrix X for r < 1 +
√

49
50 .

For r = 9
5 we obtain |λ| ≤ 〉A〈= 9

26 <
1
2 .

In the following two examples in view of the complicated mathematical calculations we
will not try to apply the generalized Gerschgorin theorem (in both examples assumptions of
Theorems 4.7 and 4.9 are satisfied). In the first example we construct a matrix such that the
matrix A − a11I will be 1-dominating, while there will be no isolation of the first Gerschgorin
disk.

Example 5.6. Let A ∈ L(C× C2) be given by the formula

A =

[
A11 A12

A21 A22

]
=

 0 0.75 0
ε1 1 0.5
ε2 0.5 100

 ,
where ε1, ε2 are sufficiently small. Observe that G1(A)∩G2(A) = B(0, 0.75)∩B(1, 0.5 + ε1) 6= ∅,
hence the Gerschgorin theorem does not give us that λ1 ∈ G1(A).

It is easy to see that A− a11I will be 1-dominating. Indeed from Theorem 2.10 we have

〉A〈1≤ ‖A12‖ = 3/4, 〈A〉1 ≥ ‖A−122 ‖−1 − ‖A21‖ ≈ 1.
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Hence A is 1-dominating and Theorem 3.3 implies that λ1 ∈ G1(A).

Rescaling: We set ε1 = ε2 = 0.1. We optimize by rescaling by r. The Gerschgorin disks
approach leads to the following inequalities

3

4r
< 0.5− r/10.

There is no such r for which this holds.
The approach based on cones requires that

1

r
‖A12‖ =

3

4r
< ‖A−122 ‖−1 − r‖A21‖ ≈ 1− r

10
.

We obtain

sup r ≈ 5 +

√
35

2
.

Hence we get |λ| ≤ 0.0817.

The following example illustrates the case of the matrix A for which both methods discussed
above can be applied.

Example 5.7. We put

A =

[
A11 A12

A21 A22

]
=

 0 2
5 − 1

5

1
5

3
2

2
5

− 1
10

3
10 2

 .
First, by Theorem 4.3 we estimate the eigenvalue close to 0. We have a11 = 0 and

‖A12‖∞ =
3

5
, ‖A21‖∞ =

1

5
, ‖(A22 − a11 · I)−1‖∞ =

5

6
,

‖(A22 − a11 · I)−1‖−2∞ − 4‖A12‖ · ‖A21‖∞ =
24

25
> 0.

Therefore assumptions of Theorem 4.3 are satisfied and we obtain that the eigenvalue λ close to
0 satisfies |λ| ≤ 1

5 .
Now we use the Gerschgorin theorems to estimate the eigenvalue close to 0. The Gerschgorin

disks are

G1(A) = B

(
0,

3

5

)
, G2(A) = B

(
3

2
,

3

5

)
and G3(A) = B

(
2,

2

5

)
.

It is easy to see that G1(A)∩G2(A) = ∅, G1(A)∩G3(A) = ∅ but we rescale the matrix A (with
r = 3, which is the same rescaling as in our method), we obtain the matrix

Ãr =

 0 2
15 − 1

15
3
5

3
2

2
5

− 3
10

3
10 2

 ,
and consequently G1(Ãr) ∩G2(Ãr) = ∅ and G1(Ãr) ∩G3(Ãr) = ∅. Hence from the Gerschgorin
theorem there exists an eigenvalue λ such that |λ| ≤ 1

5 .

Rescaling: We look for the largest r for each method, which allows us to obtain the best
estimation for the eigenvalue λ close to 0.

For Gerschgorin disks we need to solve the following inequalities

3

2
>

3

5r
+
r

5
+

2

5
, 2 >

3

5r
+

r

10
+

3

10
.

We obtain sup r = 1
4

(
11 +

√
73
)
. Hence we obtain bound |λ| ≤≈ 0.1228.
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The cone based approach requires

1

r
‖A12‖ =

3

5r
< ‖A−122 ‖−1 − r‖A21‖ =

6

5
− r

5
.

We obtain sup r = 3 +
√

6. Hence we obtain the bound |λ| ≤≈ 0.110102.
By doing the same calculations as above for the transpose of the matrix A we obtain

sup r =
1

2

(
3 +
√

6
)

and |λ| ≤≈ 0.110102,

from the classical Gerschgorin theorem, and for cone based we get

sup r =
1

46

(
72 +

√
3597

)
, |λ| ≤≈ 0.104565.

As one can see the use of cone based approach gives us better estimation of the eigenvalue close
to zero than the classical Gerschgorin theorem with rescaling.

Conclusions: As one can see from above examples and theorems our method is better than
Gerschgorin theorem and its modifications. The main advantages of our method are:

• locate spectrum and eigenspaces of a matrix when multiple eigenvalues or clusters of very
close eigenvalues are present,

• gives better estimation for isolated eigenvalues,

• allow to deal with composition of matrices.
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