
Computer-assisted proofs in dynamics
Part III: differential inclusions

Daniel Wilczak

Institute of Computer Science and Computational Mathematics
Jagiellonian University, Kraków, Poland

June 19, 2016

Outline of Part III:

1 Differential inclusions (problems that lead to)
2 Validated integration of differential inclusions

logarithmic norms
component-wise estimates

3 CAPD library: differential inclusions’ solvers
4 Examples of applications:

integration of piecewise-smooth systems
globally attracting fixed point for the Burgers PDE
existence of periodic orbits for Kuramoto-Sivashinsky PDE

References to third part
P. Zgliczyński. Rigorous numerics for dissipative Partial Differential Equations
II.Periodic orbit for the Kuramoto-Sivashinsky PDE - a computer-assisted proof ,
Foundations of Computational Mathematics, 4 (2004), 157–185

T. Kapela, P. Zgliczyński, A Lohner-type algorithm for control systems and ordinary
differential inclusions, Discrete and Continuous Dynamical Systems B, 11 (2009),
365-385.

P. Zgliczyński, Rigorous Numerics for Dissipative PDEs III. An effective algorithm for
rigorous integration of dissipative PDEs, Topological Methods in Nonlinear Analysis, 36
(2010) 197C262

J. Cyranka, Efficient and generic algorithm for rigorous integration forward in time of
dPDEs: Part I, Journal of Scientific Computing, Vol. 59, 1 (2014), 28-52

J. Cyranka, Existence of globally attracting fixed points of viscous Burgers equation
with constant forcing. A computer assisted proof

J. Cyranka, P. Zgliczyński, Existence of globally attracting solutions for
one-dimensional viscous Burgers equation with nonautonomous forcing - a computer
assisted proof, SIAM Journal on Applied Dynamical Systems, 14-2 (2015), 787–821

ODE (non-autonomous):

x ′(t) = f (t , x(t))

f : R×H → H – vector field

Differential inclusion:

x ′(t) ∈ f (t , x(t),u(t))

f : R×H× U → P(H) – multivalued

Problems that lead to differential inclusions

Piecewise-smooth systems

ẋ(t) = f (t , x(t))

[X] – the set we
want to propagate

Space-dependent
inclusion

Problems that lead to differential inclusions

Control systems

ẋ(t) = f (x(t),u(t))

f : Rn × U −→ Rn is a C1 in x
U ⊂ Rm is a set of admissible control values
u(t) ∈ U for all t

Time-dependent inclusion

Problems that lead to differential inclusions

Definition (Reachable Set)
Point y is reachable from point x in time T if there exists
control u such that ϕ(T , x ,u) = y .

Reachable set from point x is the set of all point
reachable from x in some time T .

Goal:
Provide algorithm which computes rigorous approximation
for reachable set. Upper and inner aproximation needed.

Problems that lead to differential inclusions

Definition (Reachable Set)
Point y is reachable from point x in time T if there exists
control u such that ϕ(T , x ,u) = y .

Reachable set from point x is the set of all point
reachable from x in some time T .

Goal:
Provide algorithm which computes rigorous approximation
for reachable set. Upper and inner aproximation needed.

Problems that lead to differential inclusions

Stiff ODEs:
Example

x ′ = f (x , y), y ′ = −Ly + g(x , y)

where g ≈ 0 and L� 1.

Solve instead

x ′(t) = f (x(t), y(t)), y(t) ∈ [Y]

and control [Y] by analytic estimates

Problems that lead to differential inclusions

Dissipative PDE Infinite dimensional ODE

Represent a solution as a Fourier series

u(t , x) =
∞∑

k∈−∞
ak (t)eikx

Substituting u(t , x) to PDE we get a system of ODE’s

ȧk (t) = F (a0,a1,a−1,a2,a−2, . . .), k ∈ Z

Decompose variables as

x(t) = (a0(t),a1(t),a−1(t), . . . ,aN(t),a−N(t))

y(t) = (aN+1(t), ...)

If there are apriori bounds on y(t) then we end up with a
differential inclusion.

Warning:
Perturbation may be time dependent!
Cannot use an ODE solver with interval parameter.

Differential inclusion: Perturbed oscillator
x ′ ∈ y + [−ε, ε], y ′ ∈ −x + [−ε, ε]

Fixed parameter

For fixed δ ∈ [−ε, ε]2

x ′ = y + δ1

y ′ = −x + δ2

All solutions remain BOUNDED!

This is a Hamiltonian system

H(x , y) =
1
2

(
(x − δ2)2 + (y + δ1)2

)

Warning:
Perturbation may be time dependent!
Cannot use an ODE solver with interval parameter.

Differential inclusion: Perturbed oscillator
x ′ ∈ y + [−ε, ε], y ′ ∈ −x + [−ε, ε]

Fixed parameter

For fixed δ ∈ [−ε, ε]2

x ′ = y + δ1

y ′ = −x + δ2

All solutions remain BOUNDED!

This is a Hamiltonian system

H(x , y) =
1
2

(
(x − δ2)2 + (y + δ1)2

)

Differential inclusion: Perturbed oscillator
x ′ ∈ y + [−ε, ε], y ′ ∈ −x + [−ε, ε]

Resonant forcing

x ′′ = −x + ε sin t
All solutions are UNBOUNDED!

x(t) =

(
x(0)− εt

2

)
cos(t) +

1
2

(2x ′(0) + ε) sin(t)

Solution for
x(0) = x ′(0) = 0
ε = 1

5 10 15 20 25 t

-10

-5

5

10

x(t)

Algorithm

Standing assumptions:

x ′(t) = f (x(t), y(t))

∈ f (x(t), [Wy])

where
f : Rn × Rm → Rn is a C1 function
y : R→ Rm is measurable and bounded on any
compact interval
we can compute y([t0, t0 + h]) ∈ [Wy]

Time dependence:
The method works for non-autonomous vector fields.

Notation:
[y0] - set of unknown functions R→ Rm

ϕ(t , x0, y0(t)) - a solution to

x ′ ∈ f (x , [y0(t)]), x(0) = x0

ϕ(t , x0, yc) - a solution to

x ′ = f (x , yc), x(0) = x0, yc = const

One step of the algorithm
INPUT:

tk , hk - current time and a time step
[xk] ⊂ Rn such that ϕ(tk , [x0], [y0(tk)]) ⊂ [xk].

OUTPUT:
tk+1 = tk + hk – new time
[xk+1] ⊂ Rn1 such that ϕ(tk+1, [x0], [y0(tk+1)]) ⊂ [xk+1].

One step of the algorithm – main parts

1 Generation of a priori bounds for ϕ
Find a convex and compact set [W2] ⊂ Rn, such that

ϕ([0,hk], [xk], [y0([tk , tk + h])]) ⊂ [W2].

2 Computation of ϕ
Fix yc ∈ y0([tk , tk + h])] and use any ODE solver to
compute

ϕ([0,hk], [xk], yc) ⊂ [W1] − convex, compact
ϕ(hk , [xk], yc) ⊂ [xk+1]

3 Add influence of perturbation
Compute [∆] ⊂ Rn, such that

ϕ(tk+1, [x0], [y0(tk+1)]) ⊂ ϕ(hk , [xk], yc) + [∆]

⊂ [xk+1] + [∆]

=: [xk+1]

Generation of a priori bounds

A priori bound [Wy] for unknown function:

[y0([tk , tk + h])] ⊂ [Wy]

Comment:
This is problem dependent.

in piecewise-smooth systems this is known explicitly
in the context of dissipative PDEs the whole story is more
complicated, because [Wy] is x-dependent – details later

In what follows we assume [Wy] is computed.

Generation of a priori bounds

A priori bound [W2] for differential inclusion:

ϕ([0,hk], [xk], [Wy]) ⊂ [W2].

Warning:

Perturbation y(t) may not be continuous!
Cannot differentiate and use High Order Enclosure

First Order Enclosure:

[xk] + [0,hk] ∗ [f ([W2], [Wy])]I ⊂ int [W2]

⇓

ϕ([0,hk], [xk], [Wy]) ⊂ [W2]

Generation of a priori bounds

A priori bound [W2] for differential inclusion:

ϕ([0,hk], [xk], [Wy]) ⊂ [W2].

Warning:

Perturbation y(t) may not be continuous!
Cannot differentiate and use High Order Enclosure

First Order Enclosure:

[xk] + [0,hk] ∗ [f ([W2], [Wy])]I ⊂ int [W2]

⇓

ϕ([0,hk], [xk], [Wy]) ⊂ [W2]

Strategy for computing influence of inclusion:

x ′1(t) = f (x1, yc)

x ′2(t) = f (x2, y(t))

∈ f (x2, [Wy])

where
yc ∈ [Y] – constant, usually centre of [Wy]

y(t) ∈ [Wy] – unknown function

Measure the difference |x1(t)− x2(t)| ⊂ [∆]

Two methods for computing [∆]:
logarithmic norms
component-wise estimates

Propagation of errors in ODEs:

x ′ = f (x)

L - Lipschitz constant

|f (x)− f (y)| ≤ L|x − y |

Then

|x(t)− y(t)| ≤ eLt |x − y |, t ≥ 0

This is very bad estimate
Example

x ′ = −10x
Predicted growth e10t !

Logarithmic norms

Definition
Logarithmic norm of a square matrix A:

µ(A) = lim sup
h→0+

‖Id + Ah‖ − 1
h

,

where ‖ · ‖ is a given matrix norm.

Fact
Logarithmic norm is not a norm.
It can be negative!

Logarithmic norms

Easy to compute:
1 for max norm ‖x‖1

µ(A) = max
j

(ajj +
∑
i 6=j

|aij|)

2 for Euclidean norm ‖x‖2

µ(A) = largest eigenvalue of (A + AT)/2

3 for sum norm ‖x‖∞

µ(A) = max
i

(aii +
∑
j 6=i

|aij|)

Theorem (Hairer, Nørsett, Wanner (1987), Thm. I.10.6)

x(t) – solution to

x ′(t) = f (t , x(t)), x ∈ Rn.

ν(t) : R→ Rn – piecewise smooth.

If

µ

(
∂f
∂x

(t , η)

)
≤ κ(t) for η ∈ [x(t), ν(t)]

|ν ′(t)− f (t , ν(t))| ≤ δ(t).

Then for t ≥ t0 we have

|x(t)− ν(t)| ≤ eL(t)
(
|x(t0)− ν(t0)|+

∫ t

t0
e−L(s)δ(s)ds

)
,

with L(t) =
∫ t

t0
κ(τ)dτ .

Corollary (fundamental estimate):
Z – convex set
x2([0,T]) ⊂ Z – a smooth function
x1([0,T]) ⊂ Z – a solution to x ′(t) = f (t , x(t))

µ (Df (Z)) ≤ κ

‖x ′2(t)− f (t , x1(t))‖ ≤ δ

If κ 6= 0 then

|x2(t)− x1(t)| ≤ eκt |x2(0)− x1(0)|+ δ
eκt − 1
κ

If κ = 0 then

|x2(t)− x1(t)| ≤ |x2(0)− x1(0)|+ δt

Example
x ′ = −10x

Predicted growth e−10t

Lemma (Component-wise estimate)
Assume that

f : Rn × Rm → Rn is C1

y : [t0, t0 + h]→ Rm – bounded and measurable
y([t0, t0 + h]) ⊂ [Wy] – convex, compact
y0 ∈ [Wy]

x1, x2 : [t0, t0 + h]→ Rn are weak solutions to

x ′1 = f (x1, y0), x1(t0) = x0,

x ′2 = f (x2, y(t)), x2(t0) = x0.

[W1] ⊂ [W2] ⊂ Rn are convex and compact
x1(t) ∈ [W1], x2(t) ∈ [W2] for t ∈ [t0, t0 + h].

Lemma (continuation)
Then for t ∈ [t0, t0 + h] and i = 1, . . . ,n there holds

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0
eJ(t−s)C ds

)
i

,

where

[δ] = {f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy]},
Ci ≥ sup |[δi]| , i = 1, . . . ,n

Jij ≥

sup ∂fi
∂xj

([W2], [Wy]) if i = j ,

sup
∣∣∣ ∂fi
∂xj

([W2], [Wy])
∣∣∣ if i 6= j .

Influence of inclusion – logarithmic norms

INPUT:
[Wy] ⊃ [y0(tk , tk + h]) – enclosure for uknown function
[W1] – enclosure for unperturbed system

ϕ([0,h], [xk], yc) ⊂ [W1]

[W2] ⊃ [W1] enclosure for differential inclusion

ϕ([0,h], [xk], [Wy]) ⊂ [W2]

Computation of [∆]:
Fix any norm ‖ · ‖, preferably ‖x‖∞ = maxi |xi |

1. [δ] = [{f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy]}]I .
2. C = ‖[δ]‖
3. l = right

(
µ(∂f

∂x ([W2], yc))
)

4. If l 6= 0, then D = C(elh−1)
l .

If l = 0, then D = Ch
5. [∆] = [−D,D]n

Influence of inclusion – component-wise estimates

INPUT:
[Wy] ⊃ [y0(tk , tk + h]) – enclosure for uknown function
[W1] – enclosure for unperturbed system

ϕ([0,h], [xk], yc) ⊂ [W1]

[W2] ⊃ [W1] enclosure for differential inclusion

ϕ([0,h], [xk], [Wy]) ⊂ [W2]

Computation of [∆]:
1. We set

[δ] = [{f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy]}]I
Ci = right(|[δi]|), i = 1, . . . ,n

Jij =

right
(
∂fi
∂xi

([W2], [Wy])
)

if i = j ,

right
(∣∣∣ ∂fi

∂xj
([W2], [Wy])

∣∣∣) . if i 6= j .

2. D =
∫ h

0 eJ(h−s)C ds
3. [∆i] = [−Di ,Di], for i = 1, . . . ,n

Exponent of a matrix – independent story

Approach 1 (better): solve linear differential equation

Approach 2 (faster): sum Taylor series

Fact: ∫ t

0
eA(t−s)C ds = t

(∞∑
n=0

(At)n

(n + 1)!

)
· C

Am :=
(At)m

(m + 1)!
.

For the remainder term we will use the following estimate

‖AN+k‖ ≤ ‖AN‖ ·
∥∥∥∥ At

N + 2

∥∥∥∥k

Hence if
∥∥∥ At

N+2

∥∥∥ < 1, then∥∥∥∥∥∑
m>N

Am

∥∥∥∥∥ ≤ ‖AN‖ ·
∥∥∥∥ At

N + 2

∥∥∥∥ · (1−
∥∥∥∥ At

N + 2

∥∥∥∥)−1

= ‖AN‖ ·
‖At‖

N + 2− ‖At‖
=: r

And finally,
∞∑

m=0

Am =
N∑

m=0

Am + [−r , r]n (1)

Wrapping effect

Representation of a set, for example

[X] = x0 + C[r0] + B[r]

Unperturbed systems solved by:

X (h) ⊂ Φ(x0) + (DΦ([X])C)[r0] + (DΦ([X])C)[r] + [R]

Differential inclusion solved by:

X (h) ⊂ Φ(x0) + (DΦ([X])C)[r0] + (DΦ([X])C)[r] + [R] + [∆]

Use the same strategies as for ODEs to propagate
products (provided [∆] is relatively small)

Differential inclusions in CAPD

IMultiMap - class that represents vector field
written in the form f (x) + [y]

InclRect2Set - representation of a set in the
form of doubleton
CWDiffInclSolver - solver for differential
inclusions that uses component-wise
estimates to compute [∆]

LNDiffInclSolver - solver for differential
inclusions that uses logarithmic norm to
compute [∆]

#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
int main(){

// f is an unperturbed vector field
IMap f("var:x,y;fun:y,(1-xˆ2)*y-x;");
// we define a perturbation e(t) \in [-eps,eps]
IMap perturb("par:e;var:x,y;fun:e,e;");
perturb.setParameter("e", interval(-1e-4, 1e-4));
// We set right hand side of differential inclusion to f + perturb
IMultiMap rhs(f, perturb);
// We set up two differential inclusions (order 20)
// (they differ in the way they handle perturbations)
CWDiffInclSolver cwSolver(rhs, 20, IMaxNorm());
LNDiffInclSolver lnSolver(rhs, 20, IEuclLNorm());
// constant time step, just for this example (not recommended)
cwSolver.setStep(1./128); lnSolver.setStep(1./128);
// Representation of initial condition for diff. incl.
InclRect2Set lnSet({2.,0.}), cwSet({2.0, 0.0});
// We perform some numnber of steps with constant time step
for(int i = 0; i < 128; ++i) {
lnSet.move(lnSolver);
cwSet.move(cwSolver);

}
std::cout.precision(10);
std::cout << "LN method:\n" << IVector(lnSet) << std::endl;
std::cout << "CW method:\n" << IVector(cwSet) << std::endl;

}

/* Output:
LN method:
{[1.507948164, 1.50834031],[-0.7803484048, -0.7800877445]}
CW method:
{[1.508005535, 1.508282938],[-0.7803100148, -0.7801261345]}
*/

#include <iostream>
#include "capd/capdlib.h"
#include "capd/poincare/TimeMap.hpp"
using namespace capd;
using namespace std;
typedef poincare::TimeMap<CWDiffInclSolver> CWTimeMap;
int main(){

// f is an unperturbed vector field
IMap f("var:x,y;fun:y,(1-xˆ2)*y-x;");
// we define a perturbation e(t) \in [-eps,eps]
IMap perturb("par:e;var:x,y;fun:e,e;");
perturb.setParameter("e", interval(-1e-4, 1e-4));
// We set right hand side of differential inclusion to f + perturb
IMultiMap rhs(f, perturb);
// component-wise based solver
CWDiffInclSolver cwSolver(rhs, 20, IMaxNorm());
// class for long-time integration with this solver
CWTimeMap tm(cwSolver);
// Representation of initial condition for diff. incl.
InclRect2Set set({2.,3.});
cout.precision(13);
cout << "phi(1,(2,3))=\n" << tm(1.,set);

}
/* Output:
phi(1,(2,3))=
{[2.300371385204, 2.300624075276],[-0.4798629375598, -0.4797786804589]}
*/

Integration of dissipative PDEs

A Model Problem

Kuramoto-Sivashinsky PDE:

ut = −νuxxxx − uxx + 2uux , ν > 0

where (t , x) ∈ [0,∞)× R

Odd and periodic boundary conditions:

u(t ,0) = u(t ,2π)

u(t ,−x) = −u(t , x)

Fourier expansion

Expand solutions as Fourier series:

u(t , x) =
∞∑

k=−∞

bk(t)eikx

Using PDE and boundary conditions:

ȧk = k2(1−νk2)ak−k
k−1∑
n=1

anak−n +2k
∞∑

n=1

anan+k

where bk = iak and k = 1,2,3,

Infinite dimensional system of ODEs.

Linearization:

ODE:

ȧk = k2(1−νk2)ak−k
k−1∑
n=1

anak−n +2k
∞∑

n=1

anan+k

Linear part (from Laplacian):

ȧk = k2(1− νk2)ak

k th mode is unstable for k < 1√
ν

k th mode is stable for k > 1√
ν

the modes with k >> 1√
ν

should be irrelevant
for the dynamics

KS PDE – some known analytical results

Foias, Temam:
the existence of global attractor, the functions from
attractor are analytic
(Fourier series converge at geometric rate)

Foias, Nicolaenko, Sell, Temam, Rossa, Jolly:
the existence of finite dimensional inertial manifold
(not of much use in rigorous numerics)

No analytical results dynamics more complicated
than fixed points bifurcating from zero solution

Some computer-assisted proofs for KS PDE

There are several computer-assisted proofs concerning
dynamics of the KS PDE.

branches of steady states
attracting periodic orbits
hyperbolic periodic orbits
connecting orbits between steady states
chaos

Goal:
give some details of computer-assisted proof of

Theorem (Zgliczyński)
There are periodic solutions (both stable and unstable) for
various parameter values ν ≈ 0.1215, 0.1212, 0.125,
0.032, 0.02991

Methodology:
Poincaré map for finite dimensional projection:

Πm := {(a1, . . . ,am) : a1 = a3}, Pm : Πm → Πm

periodic points for finite dimensional projection:
show that there is M > 0 such that for all m > M there is a
fixed point xm for Pm

convergence:
using some compactness argument show that xm has a
convergent subsequence to a fixed point for full infinite
dimensional Poincaré map.

General idea of integration of dissipative PDEs

Impose the following structure of PDE:

ut = Lu + N(u,Du, . . . ,Dr u),

where
u ∈ R, x ∈ T = R/2π
L – linear operator
N – polynomial
Dsu denotes s-th order derivative of u
L is diagonal in the Fourier basis {eikx}k∈Z

Leikx = λkeikx

and the eigenvalues λk satisfy

λk = −v(|k |)|k |p

0 < v0 ≤ v(|k |) ≤ v1, for |k | > K−
p > r

The last assumption is crucial:
for large k linear part dominates nonlinear near ak = 0.

Corresponding ODE in the Fourier basis:

u(t , x) =
∑

k

uk(t)eikx

duk

dt
= λkuk + Nk(u), for all k ∈ Z

Split u = (p,q):
p ∈ X - finite dimensional part which contain
observed relevant dynamics
q ∈ T ⊂ X⊥ - infinite dimensional compact
tail on which the dynamics is strongly
contracting

Evolution of p and q

Dynamics in X– differential inclusion:
dp
dt
∈ P(Lp + N(p + T)), p ∈ X

where P is a projection onto X .

Dynamics in T– infinite set of inequalities:

λkuk + N−k <
duk

dt
< λkuk + N+

k

where N±k are computable constants.

Consistency:
T is varying in time. We need some consistency
conditions in order to integrate differential
inclusion.

Notation: H – Hilbert space,
e1,e2, . . . – an orthogonal basis in H
Xm - subspace spanned by e1, . . . ,em
Pm,Qm – projections onto Xm and X⊥m

pm = Pma := (a1,a2, . . . ,am)

qm = Qma := (am+1,am+2, . . .)

Vector field:

ȧ = F (a) = L(a) + N(a)

Problem:
F is not continuous, with dense domain in H.

Standing (admissibility) assumption:
Fk ◦ Pn is a C1-function for n, k ∈ N

The method of self-consistent bounds (special case)

Fix 0 < m ≤ M (integers)

Definition
(W ,T ,m,M) is a self-consistent a-priori bounds for F if:

W ⊂ Xm is a compact set and
T =

∏
k>m Tk , where Tk = [a−k ,a

+
k] (T=tail)

Moreover, the following three conditions are satisfied.
[C1] For k > M there holds 0 ∈ Tk .
[C2] Let âk := max |a±k | for k > m. Then∑

k>m â2
k <∞. In particular

W ⊕ T ⊂ H

[C3] The function u → F (u) is continuous on
W ⊕ T ⊂ H. Moreover,

∑
k∈I>m

f̂ 2
k <∞, where

f̂k = max {|Fk (u)| : u ∈W ⊕ T} .

The method of self-consistent bounds (special case)

Definition
(W ,T ,m,M) is topologically self-consistend
bound for F if additionally

[C4]

ak = a+
k ⇒ ȧk < 0

ak = a−k ⇒ ȧk > 0

C1, C2, C3 – convergence
C4 – isolation and a priori bounds

Finite representation of W ⊕ T

W – finite dimensional object.
(doubleton, tripleton, etc.)

Polynomial decay of tail:

|a±k | = C/ks

C ≥ 0 and s ≥ 2

Geometric decay of tail:

|a±k | = Cqk

C ≥ 0 and 0 < q < 1

Why is it possible to obtain rough enclosure?

Recall the form

ut = Lu + N(u,Du, . . . ,Dr u)

Lemma (bound for nonlinear part)

If |ak | ≤ C/ks, |a0| ≤ C and s > r then there exists D = D(C, s)

|Nk | ≤
D

ks−r , |N0| ≤ D

Lemma (Isolation)

Assume L(a)k = −kpak , p > r . If |ak | ≤ C
ks , |ak0 | = C

ks
0
, then

d |ak0 |
dt

≤ −|k0|p|ak0 |+ |Nk0(a)| ≤

−C|k0|p−s + D|k0|r−s

Rough enclosure - data

INPUT:
a = (ak)k>0 = ([X],C, s), i.e. |ak | ≤ C/ks

h > 0 – time step

OUTPUT:
W = (Wk)k>0 = ([Y],D, s0) such that

a([0,h]) ⊂W

Rough enclosure - algorithm

Set W := a

repeat (possible infinite loop):
1 enlarge slightly the constant C in W

(there are some heuristics)
2 compute bound for nonlinear part [N−k ,N

+
k] := Nk (W)

(finite dimensional part + analytic estimates)
3 set finite part [Y] = enclosure for differential inclusion

(finite dimensional Galerkin projection + the above estimate on nonlinear part)

until d |ak |
dt (W) < 0 for all k > m

Result:
If the above stops, then we obtain

tail T which is forward invariant over the time step
[Y] – enclosure for differential inclusion

Apparent problem:
Decay power s0 in obtained enclosure is smaller than s in the
initial condition.

Tail evolution

For k > m we have

λkak + N−k <
dak

dt
< λkak + N+

k ,

Set

b±k =
N±k
−λk

Decay of tail coefficients:

T (h)±k =
(
T (0)±k − b±k

)
eλk h + b±k

Note that
|b±k | ≤ D/ks−r+p

where
p – decay of eigenvalues λk
r – order of derivative in nonlinear term

Smoothing effect:
If p > r then we can even improve decay power.

Periodic orbits in the KS-equation

Important property of the algorithm:
PDE integrator computes simultaneously solutions to all
n-dimensional Galerkin projections with n > m.

Attracting periodic orbit:
P – Poincaré map
B = W ⊕ T – set on section
If P(B) ⊂ B then

for all n > m finite dimensional flow induced by Galerkin
projection has a periodic orbit xn (Brouwer theorem)
B – is a compact set in infinite dimensional space
x – condensation point of xn

Periodic point for KS-equation ν = 0.127

Theorem (Zgliczyński, Symmetric attracting orbit)

Let u0(x) =
∑10

k=1−2ak sin(kx), where ak are given in table
below. There exists a function u∗(t , x) , the classical solution of
KS for ν = 0.127, such that

‖u0 − u∗(0, ·)‖L2 < 8.1 · 10−4,

‖u0 − u∗(0, ·)‖C0 < 6.5 · 10−4

such that u∗ is periodic with respect to t.

Coordinates of u0:
a1 = 2.012088e − 01 a2 = 1.289978
a3 = 2.012152e − 01 a4 = −3.778654e − 01

a5 = −4.231056e − 02 a6 = 4.316137e − 02
a7 = 6.940373e − 03 a8 = −4.156441e − 03

a9 = −7.945097e − 04 a10 = 3.315994e − 04

Proof uses Brouwer Thm. and rigorous integration of KS-PDE

Periodic point for KS-equation ν = 0.1215

Theorem (Zgliczyński, symmetric unstable orbit)

Let u0(x) =
∑11

k=1−2ak sin(kx), where ak are given in table
below. There exists a function u∗(t , x) , the classical solution of
KS for ν = 0.1215, such that

‖u0 − u∗(0, ·)‖L2 < 1.27 · 10−3,

‖u0 − u∗(0, ·)‖C0 < 8.26 · 10−4

such that u∗ is periodic with respect to t.

Coordinates of u0:
a1 = 2.450027e − 01 a2 = 1.041500e + 00
a3 = 2.449985e − 01 a4 = −2.760754e − 01

a5 = −4.371320e − 02 a6 = 2.531380e − 02
a7 = 6.345919e − 03 a8 = −1.996779e − 03

a9 = −6.177148e − 04 a10 = 1.184863e − 04
a11 = 5.269771e − 05

Proof uses Miranda Thm. and rigorous integration of KS-PDE,
the orbit is apparently unstable

Viscous Burgers equation case study

Example (Burgers equation)

ut (t , x) + u(t , x) · ux (t , x)− νuxx (t , x) = F(t,x)

where t ∈ [t0,∞), x ∈ R and

u(t , x) = u(t , x + 2π), t ∈ [t0,∞), x ∈ R
F (t , x) = F (t , x + 2π), t ∈ R, x ∈ R
u(t0, x) = u0(x), t0 ∈ R, x ∈ R

where ν > 0.

Goal:
show that for a non-trivial forcing F there is globally attracting
fixed point in some class of initial conditions.

Some properties of the equation

Equation in Fourier basis

dak

dt
= −i

k
2

∑
k1∈Z

ak1 · ak−k1+λkak +fk (t), t ∈ [t0,∞), k ∈ Z,

Global existence and uniqueness for real solutions.

ak = a−k , fk (t) = fk (t) for t ∈ R.

Energy absorbing l2 ball

d E({ak})
d t

< 0, as long as E({ak}) >
supt∈R E({fk (t)})

ν2

Theorem (Cyranka)

For ν = 2 and f ∈ S2, where

S2 = {x 7→ p(x) + q(x) + r(x)}

p(x) = −0.6 sin(x) + 0.7 cos(2x) + 0.7 sin(2x)− 0.8 cos(3x)− 0.8 sin(3x)

q(x) = sin(t) [−0.6 cos(x) + 0.7 cos(2x) + 0.7 sin(2x)− 0.8 cos(3x)− 0.8 sin(3x)]

r(x) =
3∑

k=1

βk (t) sin(kx) + γk (t) cos(kx), βk (t), γk (t) ∈
[
−5 · 10−5, 5 · 10−5

]
∀ t ,

there exists a classical solution defined on R which attracts exponentially any initial
data u0 satisfying u0 ∈ C4 and

∫ 2π
0 u0(x) dx = π.

Three steps of the proof

Methodology

tp - period of dominant part of nonautonomous part of forcing.

Calculate the Lipschitz constant of Φtp on W0 using the interval
enclosure

[W] :=
n⋃

i=0

[ti , ti+1]× [ϕ (ti , [0, ti+1 − ti], [xi])] .

Lipschitz constant of Φtp is bounded by

L = Cel , l =
n∑

i=0

li · (ti+1 − ti)Pi 7→i+1,

where li are Logarithmic norms calculated locally on each part
of [W].

If l < 0 then the existence of a locally attracting orbit within W is
claimed.

