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A function which does not have any finite-fold Diophantine
representation and probably equals
{(1, 1)} ∪

{(
n, 22n−1

)
: n ∈ {2, 3, 4, . . .}

}

Apoloniusz Tyszka

Abstract

Let g = {(1, 1)} ∪
{(

n, 22n−1
)

: n ∈ {2, 3, 4, . . .}
}
. For a positive

integer n, let f (n) denote the smallest non-negative integer b such that for
each system S ⊆ {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}} with
a finite number of solutions in non-negative integers x1, . . . , xn, all these
solutions belong to [0, b]n. We prove that the function f does not have
any finite-fold Diophantine representation and g(n) ≤ f (n) for each n. We
conjecture that g = f and prove some corollaries of it.

Key words: Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine
equation with a finite number of solutions, finite-fold Diophantine representation.
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The Davis-Putnam-Robinson-Matiyasevich theorem states that every
recursively enumerable setM ⊆ Nn has a Diophantine representation, that is

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0 (R)

for some polynomial W with integer coefficients, see [4] and [3]. The
polynomial W can be computed, if we know a Turing machine M such that, for all
(a1, . . . , an) ∈ Nn, M halts on (a1, . . . , an) if and only if (a1, . . . , an) ∈ M, see [4]
and [3].
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The representation (R) is said to be finite-fold if for any a1, . . . , an ∈ N

the equation W(a1, . . . , an, x1, . . . , xm) = 0 has at most finitely many solutions
(x1, . . . , xm) ∈ Nm.

Conjecture 1. ([2, pp. 341–342], [5, p. 42], [6, p. 79]) Each recursively
enumerable setM ⊆ Nn has a finite-fold Diophantine representation.

Let Rng denote the class of all rings K that extend Z. Th. Skolem proved that
any Diophantine equation can be algorithmically transformed into an equivalent
system of Diophantine equations of degree at most 2, see [7, pp. 2–3] and
[4, pp. 3–4]. Let

En = {xi = 1, xi + x j = xk, xi · x j = xk : i, j, k ∈ {1, . . . , n}}

The following result strengthens Skolem’s theorem.

Lemma 1. Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. Assume that di = deg(D, xi) ≥ 1 for
each i ∈ {1, . . . , p}. We can compute a positive integer n > p and a system T ⊆ En

which satisfies the following two conditions:

Condition 1. If K ∈ Rng ∪ {N}, then

∀x̃1, . . . , x̃p ∈ K
(
D(x̃1, . . . , x̃p) = 0⇐⇒

∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T
)

Condition 2. If K ∈ Rng ∪ {N}, then for each x̃1, . . . , x̃p ∈ K with
D(x̃1, . . . , x̃p) = 0, there exists a unique tuple (x̃p+1, . . . , x̃n) ∈ Kn−p such that the
tuple (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 1 and 2 imply that for each K ∈ Rng ∪ {N}, the equation
D(x1, . . . , xp) = 0 and the system T have the same number of solutions in K.
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Proof. For K ∈ Rng, Lemma 1 is proved in [10]. We provide the proof for any
K ∈ Rng ∪ {N}. Let

D(x1, . . . , xp) =
∑

a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

where a(i1, . . . , ip) denote non-zero integers, and let M denote the maximum of
the absolute values of the coefficients of D(x1, . . . , xp). Let T denote the set of
all polynomials W(x1, . . . , xp) ∈ Z[x1, . . . , xp] such that their coefficients belong
to the interval [0,M] and deg(W, xi) ≤ di for each i ∈ {1, . . . , p}. Let n denote the
cardinality of T . It is easy to check that

n = (M + 1)(d1 + 1) · . . . · (dp + 1) ≥ 22p
> p

We define:

A(x1, . . . , xp) =
∑

a(i1,...,ip)>0

a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

B(x1, . . . , xp) =
∑

a(i1,...,ip)<0

−a(i1, . . . , ip) · xi1
1 · . . . · x

ip
p

The equation D(x1, . . . , xp) = 0 is equivalent to 0 + A(x1, . . . , xp) = B(x1, . . . , xp),
where 0, A(x1, . . . , xp), B(x1, . . . , xp) ∈ T . We choose any bijection
τ : {1, . . . , n} −→ T such that τ(1) = x1, . . . , τ(p) = xp, and τ(p + 1) = 0.
Let H denote the set of all equations from En which are identities in
Z[x1, . . . , xp], if xi = τ(i) for each i ∈ {1, . . . , n}. Since τ(p + 1) = 0, the
equation xp+1 + xp+1 = xp+1 belongs to H . We define T as H ∪ {xp+1 + xs = xt},
where s = τ−1(A(x1, . . . , xp)) and t = τ−1(B(x1, . . . , xp)). For each x̃1, . . . , x̃p ∈ K
with D(x̃1, . . . , x̃p) = 0, the sought-for elements x̃p+1, . . . , x̃n ∈ K exist, are unique,
and satisfy

∀i ∈ {p + 1, . . . , n} x̃i = τ(i)[x1 7→ x̃1, . . . , xp 7→ x̃p]

�
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For a positive integer n, let f (n) denote the smallest non-negative integer b
such that for each system S ⊆ En with a finite number of solutions in non-negative
integers x1, . . . , xn, all these solutions belong to [0, b]n. We find that f (1) = 1 and
f (2) = 4, because the value of f (1) is attained by the system {x1 = 1} and the value
of f (2) is attained by the system {x1 + x1 = x2, x1 · x1 = x2}.

Lemma 2. For each integer n ≥ 2, f (n + 1) ≥ f (n)2 > f (n).

Proof. If a system S ⊆ En has only finitely many solutions in
non-negative integers x1, . . . , xn, then for each i ∈ {1, . . . , n} the system
S ∪ {xi · xi = xn+1} ⊆ En+1 has only finitely many solutions in non-negative
integers x1, . . . , xn+1. �

Theorem. The function f does not have any finite-fold Diophantine
representation.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine
representation of f . By Lemma 1, there is an integer s ≥ 3 such that for any
non-negative integers x1, x2,

(x1, x2) ∈ f ⇐⇒ ∃x3, . . . , xs ∈ N Φ(x1, x2, x3, . . . , xs), (E)

where the formula Φ(x1, x2, x3, . . . , xs) is a conjunction of formulae of the forms
xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , s}) and

(FF) for each non-negative integers x1, x2 at most finitely many tuples
(x3, . . . , xs) ∈ Ns−2 satisfy Φ(x1, x2, x3, . . . , xs).

Let S denote the following system

all equations occurring in Φ(x1, x2, x3, . . . , xs)
t1 = 1

t1 + t1 = t2

t1 + t2 = t3

. . .

t1 + ts = ts+1

ts+1 + ts+1 = x1
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with 2s + 1 variables. By the equivalence (E), the system S is satisfiable over
non-negative integers. The condition (FF) implies that S has only finitely many
solutions in non-negative integers. If a tuple (x1, x2, x3, . . . , xs, t1, . . . , ts+1) of
non-negative integers solves S , then x1 = 2s + 2. By the equivalence (E) and
Lemma 2,

x2 = f (x1) = f (2s + 2) > f (2s + 1)

The inequality x2 > f (2s + 1) contradicts the definition of f (2s + 1), as the
system S contains 2s + 1 variables. �

Let g = {(1, 1)} ∪
{(

n, 22n−1
)

: n ∈ {2, 3, 4, . . .}
}
. The system

x1 + x1 = x2

x1 · x1 = x2

x2 · x2 = x3

x3 · x3 = x4

. . .

xn−1 · xn−1 = xn

has exactly two integer solutions, namely (0, . . . , 0) and(
2, 4, 16, 256, . . . , 22n−2

, 22n−1
)
. Therefore, g(n) ≤ f (n) for each n. The following

Conjecture 2 contradicts Conjecture 1, as it will follow from Corollary 2 or
Corollary 3.

Conjecture 2. g = f .

Question. Does there exist an algorithm which to each Diophantine equation
assigns an integer which is greater than the heights of integer (non-negative
integer, positive integer, rational) solutions, if these solutions form a finite set?

Conjecture 2 provides an affirmative answer to the Question and implies the
following three corollaries.

Corollary 1. (cf. [1], [8], [9], [11]) There is an algorithm which to each
Diophantine equation assigns an integer which is greater than the heights
of integer (non-negative integer, positive integer, rational) solutions, if these
solutions form a finite set.
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Corollary 2. The function N 3 n→ 2n ∈ N does not have any finite-fold
Diophantine representation.

Proof. Assume, on the contrary, that there is a finite-fold Diophantine
representation of the function N 3 n→ 2n ∈ N. Then, Conjecture 1 is true
([5, p. 42]). This conclusion implies a negative answer to the Question
restricted to non-negative integer solutions ([5, p. 42]). By this and Corollary 1,
Conjecture 2 is false, a contradiction. �

Corollary 3. If a setM ⊆ N is recursively enumerable but not recursive, then a
finite-fold Diophantine representation ofM does not exist.

Proof. LetM ⊆ N be recursively enumerable but not recursive. Assume, on the
contrary, thatM has a finite-fold Diophantine representation. It means that there
exists a polynomial W(x, x1, . . . , xm) with integer coefficients such that

∀a ∈ N
(
a ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a, x1, . . . , xm) = 0

)
and for any a ∈ N the equation W(a, x1, . . . , xm) = 0 has at most finitely many
solutions (x1, . . . , xm) ∈ Nm. By Corollary 1, there is a computable function
h : N→ N such that

∀a, x1, . . . , xm ∈ N
(
W(a, x1, . . . , xm) = 0 =⇒ max(x1, . . . , xm) ≤ h(a)

)
Hence, we can decide whether a non-negative integer a belongs toM by checking
whether the equation W(a, x1, . . . , xm) = 0 has an integer solution in the box
[0, h(a)]m, a contradiction. �
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