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Abstract

A packing of a graph G is a set {G1, G2} such that G1
∼= G, G2

∼= G,
and G1 and G2 are edge disjoint subgraphs of Kn. Let F be a family of
graphs. A near packing admitting F of a graph G is a generalization of a
packing. In a near packing admitting F , the two copies of G may overlap
so the subgraph defined by the edges common to both copies is a member
of F . In the paper we study three families of graphs (1) Ek – the family
of all graphs with with at most k edges, (2) Dk – the family of all graphs
with maximum degree at most k, and (3) Ck – the family of all graphs that
do not contain a subgraph of connectivity greater than or equal to k + 1.
By m(n,F) we denote the maximum number m such that each graph of
order n and size less than or equal to m has a near-packing admitting F .
It is well known that m(n, C0) = m(n,D0) = m(n, E0) = n − 2 because
a near packing admitting C0, D0 or E0 is just a packing. We prove some
generalization of this result, namely we prove that m(n, Ck) ≈ (k + 1)n,
m(n,D1) ≈ 3

2
n, m(n,D2) ≈ 2n. We also present bounds on m(n, Ek).

Finally, we prove that each graph of girth at least five has a near packing
admitting C1 (i.e. a near packing admitting the family of acyclic graphs).

1 Introduction

In this paper we use the term graph to refer to simple graphs without loops or
multiple edges. The vertex and edge set of a graph G is denoted by V (G) and
E(G), respectively. The maximum degree of G is denoted by ∆(G). A graph is
called k-connected if any two of its vertices can be joined by k internally vertex
disjoint paths. A complete graph K1 is 0-connected.

Definition 1 Let G1 and G2 be two graphs such that |V (G1)| = |V (G2)| = n.
A packing of G1 and G2 is a pair of edge-disjoint subgraphs {H1, H2} of Kn

such that H1
∼= G1 and H2

∼= G2.

∗The author was partially supported by the Polish Ministry of Science and Higher Educa-

tion.
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Definition 2 Let F be any family of graphs and let G1, G2 be two graphs such
that |V (G1)| = |V (G2)| = n. A near packing admitting F of G1 and G2 is a pair
of edge-disjoint subgraphs {H1, H2} of Kn such that H1

∼= G1 and H2
∼= G2,

and the subgraph having edges E(H1) ∩ E(H2) is a member of F .

Given a graph G and a permutation σ of V (G), by σ(G) we denote the graph
with V (σ(G)) = V (G) and such that σ(u)σ(v) ∈ E(σ(G)) if and only if uv ∈
E(G) for any u, v ∈ V (G). The spanning subgraph of G having edges E(G) ∩
E(σ(G)) is denoted by G∗

σ (abbreviated to G∗ if no confusion arises). Thus, in
case when G1

∼= G2
∼= G the problem of finding a near packing admitting F

of G1 and G2 is equivalent to the problem of finding a permutation σ of V (G)
such that G∗

σ ∈ F . Such a permutation σ of V (G) is called a near packing of G

admitting F .
We consider three families of graphs : (1) Ek being the family of all graphs

with with at most k edges, (2) Dk being the family of all graphs with maximum
degree at most k, and (3) Ck being the family of all graphs that do not contain a
subgraph of connectivity greater than or equal to k+1. Notice thatD0 = C0 = E0
is a family of edgeless graphs. Furthermore C1 is a family of acyclic graphs and
C1 ∩ D2 is a family of linear forests (i.e. disjoint unions of paths).

Let F be any family of graphs. By m(n,F) we denote the maximum number
m such that each graph of order n and size less than or equal to m has a near-
packing admitting F . A classic result in this area, obtained independently in
[1, 2, 8], states that

Theorem 3 ([1, 2, 8]) m(n, C0) = m(n,D0) = m(n, E0) = n− 2,

because a near packing admitting C0, D0 or E0 is just a packing. Our aim
is to prove some generalizations of Theorem 3. For every k ≥ 1, we determine
m(n, Ck) up to a constant depending only on k. We find the problem concerning
near packings admitting Dk considerably harder. We determine only m(n,D1)
up to a constant, while m(n,D2) is determined assymptotically. We also give
bounds on m(n, Ek).

The notion of a near packing was introduced by Eaton [3] in order to ob-
tain some investigations concerning the following conjecture of Bollobás and
Eldridge:

Conjecture 4 ([1]) If |V (G1)| = |V (G2)| = n and (∆(G1)+1) ·(∆(G2)+1) ≤
n+ 1, then there is a packing of G1 and G2.

The following theorem is a special case of a more general result proved by Eaton.

Theorem 5 ([3]) If |V (G1)| = |V (G2)| = n and (∆(G1) + 1) · (∆(G2) + 1) ≤
n+ 1, then there is a near packing admitting D1 of G1 and G2.

We also investigate another conjecture of graph packing by Faudree, Rousseau,
Schelp and Schuster [4]:

Conjecture 6 For every non-star graph G of girth at least 5, there is a packing

of two copies of G.
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In particular, Conjecture 6 is true for sufficiently large planar graphs [7]. On the
other hand, the statement from the above conjecture is true if G is a non-star
graph of girth at least six [5]. In this paper we prove that the statement is true
if the term ‘packing’ is replaced by the term ‘near packing admitting C1’. This
result is in some sense best possible, since for every permutation σ of V (Kn,n)
with n ≥ 3, K∗

n,n contains a cycle C4.

2 Lemmas

Lemma 7 Let G be a graph and k, l, q ≥ 0 integers. Suppose that G contains

an independent set U ⊂ V (G) that satisfies the following conditions:

1. dG(u) ≤ k for each u ∈ U ,

2. |NG(u) ∩NG(v)| ≤ q for every u, v ∈ U .

If |U | ≥ 2(k−q)
l−q+1 , then for every permutation σ′ of V (G) \ U there exists a per-

mutation σ of V (G) such that σ|G−U = σ′ and dG∗

σ
(u) ≤ l for each u ∈ U .

Proof. Let G′ := G − U and σ′ be any permutation of V (G′). Below we show
that we can extend σ′ to a permutation σ as required of G.
For any v ∈ V (G′) let us define σ(v) := σ′(v). Then let us consider a bipartite
graph B with partition sets X := U × {0} and Y := U × {1}. For u, v ∈ U

the vertices (u, 0), (v, 1) are joined by an edge in B if and only if |σ′(NG(u)) ∩
NG(v)| ≤ l. So, if (u, 0), (v, 1) are joined by an edge in B we can put σ(u) = v.
In other words, if (u, 0), (v, 1) are not neighbors in B, then |σ′(N(u))∩N(v)| ≥
l + 1. Therefore, since |NG(u) ∩ NG(v)| ≤ q and dG(u) ≤ k for u ∈ U , we
have dB((u, 0)) ≥ |U | − k−q

l−q+1 ≥ k−q
l−q+1 , by the assumption on |U |. Similarly,

dB((v, 1)) ≥ k−q
l−q+1 .

Let S ⊂ X. If |S| ≤ |U | − k−q
l−q+1 then obviously |NB(S)| ≥ |S|. Notice that

if |S| > |U | − k−q
l−q+1 then NB(S) = Y . Indeed, othervise let (v, 1) ∈ Y be a

vertex which has no neighbour in S. Thus,

dB((v, 1)) ≤ |A| − |S| = |U | − |S| < |U | − (|U | − k − q

l − q + 1
) =

k − q

l − q + 1
,

a contradiction. Hence, in any case |S| ≤ |N(S)|. Thus, by the Hall’s theorem
there is a matching M in G. Therefore we can define σ(u) = v for u, v ∈ U such
that (u, 0), (v, 1) are incident with the same edge in M . 2

Proposition 8 Let G be a graph of order n and size m with m ≤ an − f(n),
where a is a real number and f(n) is a non-decreasing function. If U ⊂ V (G)
and vertices from U cover at least a|U | edges, then

m′ ≤ an′ − f(n′),

where n′ and m′ are respectively the order and the size of G− U .
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Proof.

m′ ≤ an− f(n)− a|U | = a(n− |U |)− f(n)

≤ a(n− |U |)− f(n− |U |) = an′ − f(n′),

because f(n) ≥ f(n− |U |). 2

A starry tree is a graph H such that (1) V (H) can be partitioned into three
sets V1, V2 and {x} that each induce a tree, (2) there is at least one edge
incident to x, and (3) all edges not belonging to the trees induced by V1 and V2

are incident to x. A vertex x we call a middle vertex of H. Note that a starry
tree need not be connected.

Lemma 9 Let H be a starry tree. Then there is a near-packing of H admitting

C1 ∩ D2 such that the middle vertex of H is the image of its neighbor.

Proof. The proof is by induction on |V1| + |V2|. If |V1| + |V2| = 2, then the
existence of a near-packing as required is obvious. Assume that |V1|+ |V2| ≥ 3.
Without loss of generality we may assume that |V1| ≥ 2. Let l be a leaf in T1

and let l′ be the neighbor of l other than x. We distinguish two cases:
Case 1. The middle vertex x is not joined with l.
Case 2. The middle vertex x is joined with l.
In Case 1, by the induction hypothesis, there exists a near packing σ′ of

H ′ = H −{l} (admitting C1 ∩D2) such that x is the image of its neighbor. If l′

is a fixed point of σ′, then σ1 such that σ1(l) = l′, σ1(l
′) = l and σ1(u) = σ′(u)

for any U ∈ V (H) \ {l, l′} is a near packing as required of H. Otherwise, σ2

such that σ2(l) = l and σ2(u) = σ′(u) for any U ∈ V (H) \ {l} is a near packing
as required of H.

Consider Case 2. By Theorem 3, there is a packing σ′′ of two copies of
H − {x, l}. Then σ3 such that σ3(x) = l, σ3(l) = x and σ(u) = σ′(u) for any
U ∈ V (H) \ {x, l} is a near packing as required of H. 2

3 Near packings admitting Ek
The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and
V2 and edge sets E1 and E2 is the graph union G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2)
together with all the edges joining V1 and V2.

Lemma 10 If n ≥ 2k + 2 then m(n, E2k) ≤
⌈

(k+2)(n−1)
2

⌉

− 1.

Proof. Let H be a k-regular graph of order n−1 provided that k is even or n−1
is even. Otherwise, let H be a graph with all but one vertices having degree k

and one vertex having degree k + 1. Let G = K1 + H and V (K1) = {u}. It
is easily seen that for any permutation σ of V (G), the vertex u as well as σ(u)
has degree at least k + 1 in G∗

σ. Thus, if u 6= σ(u) then G∗
σ has at least 2k + 1

edges. If u = σ(u) then u has degree n− 1 in G∗
σ. Since n ≥ 2k + 2, G∗

σ has at
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least 2k + 1 edges. Therefore, G does not have a near packing admitting E2k.
Furthermore, E(G) = (k+1)(n−1)+n−1

2 = (k+2)(n−1)
2 if k is even or n− 1 is even,

or E(G) = (k+1)(n−2)+(k+2)+(n−1)
2 = (k+2)(n−1)+1

2 otherwise. 2

Theorem 11 m(n, Ek) ≥
√

k
2n(n− 1).

Proof. Let G be a graph of order n and size m. We will prove that if m ≤
√

k
2n(n− 1) then there is a near-packing of G admitting Ek. Consider the

probability space whose n! points are the permutations of V (G). For any two
edges e, f ∈ E(G) let Xef denote the indicator random variable with value 1 if
f is an image of e. Then

E(Xef ) = Prob(Xef = 1) =
2(n− 2)!

n!
=

(

n

2

)−1

.

Let X =
∑

e,f∈E(G) Xef . Thus, by the linearity of expectation, we have

E(X) =
∑

e,f∈E(G)

E(Xef ) ≤ m2

(

n

2

)−1

≤ k.

This implies that there exists a permutation σ of V (G) such that G∗
σ has at

most k edges. Thus, σ is a near packing of G admitting Ek. 2

4 Near packings admitting Ck
Recall that m(n, C0) = n − 2. We start with the following construction. Let
K+

s,k−s,k−s denote a graph with vertex set V (K+
s,k−s,k−s) = X1∪X2∪Y such that

X1, X2, Y are pairwise disjoint and |X1| = s, |X2| = |Y | = k − s. Furthermore,
E(K+

s,k−s,k−s) = E1 ∪ E2, where E1 = {xy : x ∈ X1 ∪ X2, y ∈ Y } and E2 =

{xz : x ∈ X1, z ∈ X1 ∪X2}. In other words, K+
s,k−s,k−s arises from a tripartite

graph by adding all possible edges having two endpoints in X1, see Figure 1.
It is easily seen that any two vertices of K+

s,k−s,k−s are joined by at least k

internally vertex disjoint paths, so K+
s,k−s,k−s is k connected. In what follows

Ḡ denotes the complement of a graph G, i.e. a graph on the same vertex set as
G and with the property that e ∈ E(Ḡ) if and only if e 6∈ E(G).

Lemma 12 m(n, Ck) ≤ (k + 1)n− (k + 1) k+2
2 − 1

Proof. Let G = Kk+1 + Kn−k−1. Clearly, |E(G)| = (k + 1)n − (k + 1) k+2
2 .

We will show that G does not have a near packing admitting Ck. Consider an
arbitrary permutation σ of V (G). Let S ⊂ V (Kk+1) be a maximal set of vertices
with the property that σ(S) ⊂ V (Kk+1). Let |S| = s. Then, G∗

σ contains a
K∗

s,k+1−s,k+1−s with X1 = S, Y = V (Kk+1) \ S and X2 ⊂ Kn−k−1. 2

Theorem 13 m(n, Ck) ≥ (k + 1)n− 4k(k + 1)2 − 2
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Figure 1: K+
2,1,1

Proof. For k = 0 the result follows from Theorem 3. Fix k ≥ 1 and let
ck = 4k(k + 1)2 + 2. We will prove that each graph of order n and size at most
(k + 1)n− ck has a near packing admitting Ck.

Suppose that G is a counterexample with minimum order n. Let m denote
the size of G, so m ≤ (k + 1)n− ck. Note that if n ≤ 4(k + 1)2, then

m ≤ (k+1)n− ck = kn− ck + n ≤ k(4(k+1)2)− (4k(k+1)2 +2)+ n = n− 2.

Hence G has a near packing admitting Ck, by Theorem 3, which contradicts our
assumption on G. Thus, we may assume that n ≥ 4(k + 1)2 + 1. Furthermore,
if ∆(G) ≤ 2(k + 1) − 1 then (∆(G) + 1)2 ≤ 4(k + 1)2 < n + 1. Hence, G has
a near packing admitting Ck by Theorem 5 (because D1 ⊂ Ck), a contradiction
again. Therefore, we may assume that ∆(G) ≥ 2(k + 1). Let w ∈ V (G) with
dG(w) ≥ 2(k + 1).

Suppose first that G contains a vertex u with dG(u) ≤ k. By Proposition
8 and by the minimality assumption, G′ := G − {u,w} has a near packing σ′

admitting Ck. We claim that σ := (u,w)σ′ is a near packing of G admitting Ck.
Indeed, since dG(u) ≤ k then dG∗(u) ≤ k as well as dG∗(w) ≤ k. Hence, neither
u nor w can be in a subgraph of G∗ of connectivity k + 1 or more. Moreover,
since σ|G′ is a near packing of G′ admitting Ck, then G∗ − {u,w} does not
contain a subgraph of connectivity k+1 or more, neither. Therefore, σ is a near
packing of G admitting Ck.

Thus, we may assume that dG(u) ≥ k + 1 for every u ∈ V (G). Let S be a
maximum set of vertices of G such that S is independent, k+1 ≤ dG(u) ≤ 2k+1
for each u ∈ S, and |NG(u) ∩ NG(w)| ≤ k for every u,w ∈ S. Since S is
independent, by Proposition 8 and by the minimality assumption, G− S has a
near packing σ′′ admitting Ck. By Lemma 7 (with k, l, q replaced by 2k+1, k, k,
respectively), if |S| ≥ 2k + 2 then there is a permutation σ of G, such that
σ|G−S = σ′′ and dG∗(u) ≤ k for every u ∈ S. Simirarly as before, we can see
that σ is a near packing of G admitting Ck, a contradiction.
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Therefore |S| ≤ 2k + 1 and so |NG(S)| ≤ (2k + 1)2. Let Vj = {v ∈ V (G) \
NG(S) : dG(v) = j}. Note that by the definition of S, we have |NG(S) ∩
NG(u)| ≥ k + 1 for every u ∈ Vk+1 ∪ · · · ∪ V2k+1. Hence, vertices from NG(S)
are incident (in common) to at least (k+1)(|Vk+1|+ · · ·+ |V2k+1|) edges. Thus,

(2k + 2)n− 8k(k + 1)2 − 4 ≥ 2m

=
∑

u∈NG(S)

dG(u) +
∑

v∈V (G)\NG(S)

dG(v)

≥ (k + 1)(|Vk+1|+ . . . |V2k+1|) + (k + 1)|Vk+1|+ · · ·+ (2k + 1)|V2k+1|
+ (2k + 2)(n− |Vk+1|+ . . . |V2k+1| − |NG(S)|)
≥ (2k + 2)n− (2k + 2)(2k + 1)2,

a contradiction. Hence, we deduce no counterexample to Theorem 13 exists. 2

Theorem 14 Every graph of girth at least 5 has a near packing admitting C1.

Proof. Let G be a minimum counterexample to Theorem 14. Let u ∈ V (G)
with dG(u) = ∆(G). Let G′ = G−u and U = NG(u). By the girth assumption,
U is an independent set in G′ (as well as in G), and NG′(x) ∩ NG′(y) = ∅ for
every x, y ∈ U . By the minimality assumption G′′ := G′−U has a near packing
σ′′ admitting C1. Moreover, |U | = ∆(G) and dG′(u) ≤ ∆(G) − 1. Hence, by
Lemma 7 (with k = ∆(G)− 1, l = 1, q = 0), G′ has a near packing σ′ such that
σ′|G′′ = σ′′ and dG′∗(u) ≤ 1 for each u ∈ U . Thus, since G′′∗ is acyclic, G′∗ is
also acyclic. Let u be any vertex from U . It is easy to see that the permutation
σ such that σ(u) = x, σ(x) = u and σ(y) = σ′(y) for every y ∈ V (G) \ {u, x} is
a near packing of G admitting C1, a contradiction. 2

5 Near packings admitting Dk

Recall that m(n,D0) = n− 2.

Lemma 15 m(n,Dk) ≤
⌈

(k+2)(n−1)
2

⌉

− 1.

Proof. Let H be a k-regular graph of order n−1 provided that k is even or n−1
is even. Otherwise, let H be a graph with all but one vertices having degree k

and one vertex having degree k + 1. Let G = K1 + H and V (K1) = {u}. It
is easily seen that for any permutation σ of V (G), the vertex u (as well as its
image) has degree at least k + 1 in G∗

σ. Thus, G does not have a near packing

admitting Dk. Furthermore, E(G) = (k+1)(n−1)+n−1
2 = (k+2)(n−1)

2 if k is even

or n− 1 is even, or E(G) = (k+1)(n−2)+(k+2)+(n−1)
2 = (k+2)(n−1)+1

2 otherwise.2

Theorem 16 m(n,D1) ≥ 3
2n− 10

Proof. Let G be a counterexample of minimum order n. Without loss of gen-
erality we assume that m := |E(G)| = 3

2n − 10. Note that if n ≤ 16 then

7



3
2n − 10 ≤ n − 2. Thus, by Theorem 3, G has a packing which contradicts
our assumption on G. Hence, we may assume that n ≥ 17. Furthermore, if
∆(G) ≤ 3, then (∆(G) + 1)2 ≤ 16 < n+ 1, so G has a near packing admitting
D1 by Theorem 5. Thus, we may assume that ∆(G) ≥ 4. Let w ∈ V (G) with
dG(w) ≥ 4.

Suppose first that G has a vertex u with dG(u) = 0. Then, by Proposition
8 and by the minimality assumption, G1 := G−{u,w} has a a near packing σ1

admitting D1. Clearly, (u,w)σ1 is a near packing of G admitting D1.
So we may assume that G has no isolated vertex. Suppose now that G has

a vertex u with dG(u) = 1 and let v be the neighbor of u. If dG(v) ≥ 3 then, by
Proposition 8 and by the minimality assumption, G2 := G − {u, v} has a near
packing σ2 admitting D1. Clearly, (u, v)σ2 is a near packing admitting D1 of
G. Similarly, if dG(v) = 1 then (u)(w, v)σ3 is a near packing admitting D1 of
G where σ3 is a near packing admitting D1 of G − {u, v, w} (σ3 exists by the
minimality assumption). Thus we may assume that dG(v) = 2. Let x be the
neighbor of v different from u. If x 6= w then (u)(v, w, x)σ4 is a near packing
admitting D1 of G where σ4 is a near packing admitting D1 of G− {u, v, w, x}
(σ4 exists by the minimality assumption). Finally, if x = w then (u)(v, w)σ5 is
a near packing admitting D1 of G where σ5 is a near packing admitting D1 of
G− {u, v, w} (σ5 exists by the minimality assumption).

Therefore, we may assume that dG(u) ≥ 2 for each u ∈ V (G). Let S ⊂ V (G)
be a maximal set such that S is independent in G, dG(v) = 2 for every v ∈ S,
and NG(u) ∩NG(v) = ∅ for every u, v ∈ S. Note that S 6= ∅. By Proposition 8
and by the minimality assumption, G− S has a near packing σ′ admitting D1.
Note that if |S| ≥ 4, then by Lemma 7 (with k = 2, q = 0 and l = 0), there exists
a near packing of G admitting D1, a contradiction with the assumption on G.
Thus, |S| ≤ 3 and so |NG(S)| ≤ 6. Let Vj = {v ∈ V (G) \NG(S) : dG(v) = j}.
Note that by the definition of S, we have |NG(S)∩NG(u)| ≥ 1 for every u ∈ V2.
Therefore,

3n− 20 = 2m =
∑

u∈NG(S)

dG(u) +
∑

v∈V (G)\NG(S)

dG(v)

≥ |V2|+ 2|V2|+ 3(n− |V2| − |NG(S)|) ≥ 3n− 18,

a contradiction. Hence, we deduce no counterexample to Theorem 16 exists. 2

If σ is a packing of G and σ(u) 6= u for every u ∈ V (G) then we say that G
is fixed-point-free packable.

In the proof of our next result we apply the idea that was first used in [6].
We will need also the following strengthening of Theorem 3:

Theorem 17 ([9]) Every graph of order n and size at most n−2 is fixed-point-

free packable.

Theorem 18 m(n,D2 ∩ C1) ≥ 2n− 10n2/3 − 7.
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Proof. Let t =
⌊

n1/3
⌋

. We will prove that each graph of order n and size at

most max{2n−10n2/3−7, 0} has a near packing admitting D2∩C1. Clearly, we
may focus only on the case when the maximum is equal to 2n−10n2/3−7 which
implies that n ≥ 125. Suppose that G is a counterexample with minimum order
n, n ≥ 125. Hence, by Theorem 5, we may assume that ∆(G) >

√
n+ 1 > 11.

Let u ∈ V (G) with dG(u) = ∆ ≥ 12. First we prove the following claim.

Claim 19 G has no isolated vertices and G has at most 7 vertices of degree 1.

Proof of Claim. Suppose first that there is a vertex v ∈ V (G) with dG(v) = 0.
By Proposition 8 and by the minimality assumption onG, there is a near packing
σ1 of G− {u, v} admitting D2 ∩ C1. Hence, σ such that σ(u) = v, σ(v) = u and
σ(x) = σ′(x) for every x ∈ V (G) \ {v, u} is a near-packing as required of G, a
contradiction.

Suppose now thatG has at least 8 vertices of degree 1. LetW = {v1, ..., v8} ⊂
V (G) be a set of vertices such that dG(v1) = ... = dG(v8) = 1. Let yi be the
neighbor of vi. We distinguish two cases:

Case 1. There is i ∈ {1, ..., 8} such that yi ∈ W . Then by the minimality
assuption, there is a near packing as required of G1 := G−{vi, yi, u}. Let σ1 be
a near packing of G1 admitting D2∩C1. Then σ such that σ(vi) = yi, σ(yi) = u,
σ(u) = vi and σ(x) = σ1(x) for every x ∈ V (G) \ {vi, yi, u} is a near-packing as
required of G.

Case 2. W is a set of independent vertices. If there is i ∈ {1, ..., 8} such
that d(yi) ≥ 4, then by Proposition 8 and the minimality assumption there is
a near packing σ2 of G2 := G − {vi, yi} admitting D2 ∩ C1. Thus, σ such that
σ(vi) = yi, σ(yi) = vi and σ(x) = σ2(x) for every x ∈ V (G) \ {vi, yi} is a
near-packing as required of G.

Assume that d(yi) ≤ 3 for each i = 1, ..., 8. In particular, u is not a neighbor
of any vi. Suppose next that a vertex y is a common neighbor of two vertices
v, v′ ∈ W . Then, by Proposition 8 and the minimality assumption, there exists
a near packing σ3 of G3 = G − {v, v′, y, u} admitting D2 ∩ C1. Thus, σ such
that σ(v) = u, σ(u) = v, σ(v′) = y, σ(y) = v′, and σ(x) = σ3(x) for every
x ∈ V (G) \ {v, v′, y, u} is a near-packing as required of G.

Hence, we may assume that yi 6= yj if i 6= j. Let w ∈ W and let z be
the neighbor of w. Recall that dG(z) ≤ 3. Therefore, there are at least 5
vertices v1, ..., v5 ∈ W such that N(vi) ∩ N(z) = ∅. Consider now graphs
G4 = G−{v1, ..., v5, w, z, u} and G5 = D−{v1, ..., v5, z}. By Proposition 8 and
by the minimality assumption, G4 has a near packing σ4 admitting D2∩C1. Then
σ such that σ(u) = w, σ(w) = u and σ(x) = σ4(x) for every x ∈ V (G4) \ {u,w}
is a near-packing of G4 admitting D2 ∩ C1. Furthermore, vertices v1, ..., v5, z

form an independent set in G, have degrees less than or equal to 3 and have
mutually disjoint sets of neighbours. Thus, by Lemma 7 (with l = q = 0), G
has a near packing admitting D2 ∩ C1. 2

Hence, we may assume that dG(v) ≥ 2 for each vertex v in G except at most
seven of degree one. We choose a maximal set S of V (G) such that (1) S is
independent in G, (2) for each u ∈ S we have 2 ≤ dG(u) ≤ t and (3) vertices of
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S have pairwise disjoint neighborhoods. Observe that the number q of vertices
of degree greater than t does not exceed 2n2/3. Indeed

4n− 20n2/3 − 14 ≥ 2||G|| =
∑

v∈V (G)

dG(v) ≥ 7 + 2(n− 7− q) + qn1/3,

hence

q ≤ 2n− 20n2/3 − 7

n1/3 − 2
< 2n2/3.

In particular S 6= ∅. Thus, by Proposition 8 and by the minimality assumption,
G−S has a near packing admittingD2∩C1. Hence, by Lemma 7 (with q = l = 0),
there is a near packing of G admitting D2 ∩ C1, if |S| ≥ 2t. Hence |S| < 2t, and
so |N(S)| < 2t2 ≤ 2n2/3. Let Vj := {v ∈ V (G) \ N(S) : dG(v) = j}. By the
definition of S, every vertex from V2∪ ...∪Vt has a neighbor in N(S). Therefore

|N(N(S))| ≥ |V2 ∪ ... ∪ Vt| ≥ n− 7−m− |N(S)| > n− 7− 4n2/3. (1)

Thus, vertices from N(S) cover at least n− 7− 4n2/3 edges.
Consider now the graph G − N(S). Let T1,...,Tp denote connected compo-

nents of G−N(S) which are trees such that each vertex of Ti is incident with
at most one vertex in N(S). We call these components minimal components of
G−N(S). Let R := G−N(S)− V (T1)− ...− V (Tp). Let r denote the sum of
the size of R and the number of all vertices in R which are joined (in G) with
N(S) by at least two edges. Since R does not contain minimal components,
every component of R which is a tree contains a vertex joined with N(S) by
at least two edges. On the other hand, every component of R which is not a
tree has at least as many edges as vertices. Hence, r ≥ |R|. Moreover, r counts
all edges in R and some edges between R and N(S) which are not counted
in inequality (1), because this inequality counts only the number of vertices in
N(N(S)) and ignores the number of connections.

Note that there are exactly n − |N(S)| − |R| − p edges in
⋃p

i=1 Ti. Below
we show that p is greater than or equal to 2|N(S)|. By the assumption and by
inequality (1), the size of G satisfies:

2n− 10n2/3 − 7 ≥ ||G|| ≥ n− 7− 4n2/3 + (n− |N(S)| − p− |R|) + r

> 2n− 6n2/3 − 7− p− |R|+ r.

Thus

p ≥ 4n2/3 − |R|+ r ≥ 2|N(S)| − |R|+ r ≥ 2|N(S)|. (2)

Let G′ := G[N(S) ∪ V (T1) ∪ ... ∪ V (T2|N(S)|)] and G′′ := G−G′. Below we
show that there exists a near packing of G′ admitting D2∩C1 such that the image
of every vertex in N(S) is not in N(S). Let L be a set of maximum cardinality l

of vertex-disjoint starry trees, such that each starry tree is formed of two of the
trees Ti, 1 ≤ i ≤ 2|N(S)|, and one vertex (the middle vertex) from N(S). Let
H1, ..., Hl, l ≤ |N(S)|, denote the starry trees. Suppose first that l = |N(S)|.
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By Lemma 9, there is a near packing of Hi admitting D2 ∩ C1. Let σi be the
near packing as required of Hi. We claim that the product σ = σ1....σ|N(S)| is
a near-packing of G′ admitting D2 ∩ C1. Since σi is a near packing as required
of Hi, only edges between different starry trees may spoil the near packing of
G′. Furthermore, every middle vertex is mapped on a non-middle vertex. Since
there are no edges between Ti and Tj for i 6= j, the edges between different Ti

as well as the edges between middle vertices do not appear in G′∗
σ . It remains to

check the edges of the form xy where x is the middle vertex of some starry tree
and y is a non-middle vertex of another starry tree. However, since the middle
vertex of each starry tree is the image of one of its neighbors in the same starry
tree and this neighbor has no other neighbors outside its minimal component,
these edges also do not appear in G′∗

σ . Suppose now, that l < |N(S)|. Again, we
pack every starry tree in such a way that the middle vertex is the image of one of
its neighbors. Moreover, since L is maximal, each remaining vertex of N(S) has
no neighbors in each of the remaining minimal components (otherwise, we would
have an extra starry tree). Hence, by Theorem 17, each of the remaining vertices
from N(S) together with two non-trivial minimal components (not involved in
any starry tree) can be (properly) packed without fixed points. We claim that
the product σ of near packings σi and the above mentioned proper packings of
the rest of G′ is a near packing of G′ admitting D2∩C1. It suffices to prove that
the edges between different starry trees do not appear in G′∗

σ . Suppose for a
contradiction that the image of such an edge e in G′ coincides with some other
edge e′ in G′. Using the previous argument, e′ must join a vertex z ∈ N(S)
which is not in any starry tree from L with a non-middle vertex of some starry
tree H. Moreover, e must join the middle vertex of H with some minimal
component which is not in any starry tree from L. By replacing the middle
vertices incident to e and e′ we obtain more than l starry trees and we get a
contradiction. Hence there is a near packing of G′ admitting D2 ∩ C1.

Recall that r ≥ ||R||. Furthermore, by (2) we have

||G′′|| = ||R ∪ T2|N(S)|+1 ∪ ... ∪ Tp||
= ||R||+ |T2|N(S)|+1|+ ...+ |Tp| − (p− 2|N(S)|)
< ||R||+ |T2|N(S)|+1|+ ...+ |Tp| − (r − |R|)− 1

≤ |R|+ |T2|N(S)|+1|+ ...+ |Tp| − 1

= |R ∪ T2|N(S)|+1 ∪ ... ∪ Tp| − 1 = |G′′| − 1.

Thus, by Theorem 3, G′′ is packable.
Let σ′, σ′′ denote near packings of G′ and G′′ admitting D2∩C1, respectively.

Then σ = σ′σ′′ is a near packing as required of G. To prove this it suffices to
show that edges between V (G′) and V (G′′) do not appear in G∗

σ. Suppose
for a contradiction that the image of an edge xy in G, where x ∈ V (G′) and
y ∈ V (G′′), coincides with some other edge σ(x)σ(y) inG. Then x, σ(x) ∈ V (G′)
and y, σ(y) ∈ V (G′′). Since there are no edges between Ti and R in G, both
x and σ(x) belong to N(S). Then we get a contradiction, since the image
of every vertex in N(S) is not in N(S). The near-packing σ contradicts the
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assumption that G did not have a near packing admitting C1∩D2, so we deduce
no counterexample to Theorem 18 exists. 2
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