
9th European Lisp Symposium - personal report

Michaª Herda

Faculty of Mathematics and Computer Science,

Faculty of Physics, Astronomy and Applied Computer Science

Jagiellonian University, Cracow

Summary

This is a personal report covering my experiences and personal discoveries made

during the 9th European Lisp Symposium. I make notes and re�ect on the general

course the conference took and then elaborate on speci�c parts of it that caught most

of my attention and gave me the most insight and inspiration. In particular, I write

about a project of mine called the Common Lisp UltraSpec, research done on Clasp

Common Lisp and the possibility to bootstrap one Common Lisp implementation

o� another.

1 Assessment

This year's European Lisp Symposium1 was my �rst; not only it was the �rst Lisp con-
ference I attended, it was the �rst true programming/research conference in my life. From
the limited experience that I have, though, I can say that it set a very good impression
inside my mind that I would like other conferences to follow.

I attended the conference as I am very much interested in Lisp and the design of pro-
gramming languages and compilers. One of traits of Common Lisp is its ability to morph
into a variety of other languages through its versatile macro system and its programmabil-
ity - the reader, the compiler, the evaluator, all of these elements are written in Lisp itself
and can be freely extended and expanded. Because of this, Common Lisp, aside from
being a language on its own, is also a very competent metalanguage, meaning, a language
for designing other languages. I �nd this trait of Common Lisp fascinating and worth
much more research and study; I attended the ELS with hopes of �nding inspiration and
knowledge on this.

The audience of the conference was very heterogenous: there were people who borrow
ideas and inspirations from Lisp and implement them into various other languages; there
were people who bridge the gaps between Lisps and many other languages and program-
ming structures; �nally, there were people actually utilizing Scheme, Clojure, Common
Lisp and other Lisp dialects in an immensely varied collection of use cases. After the
conference I can say that without a doubt, despite common beliefs, Lispers or Lisp in

1http://www.european-lisp-symposium.org/

1

http://www.european-lisp-symposium.org/


general are not extinct at all - according to my personal calculations, this year's ELS had
about 60-70 attendees.

Organization-wise, the conference was really well thought-out. The location the con-
ference was held at was good and close to many nearby hotels and the town center, which
allowed me to give some of the guests a small tour of northern Cracovian Old Town by
the end of the conference; Cracow has been the life centre for the last few years and I was
able to share my knowledge of its history and sightworthy regions. There were no delayed
talks and the catering kept all of us adequately fooded throughout the whole conference;
the welcome party on Sunday and the farewell banquet on Tuesday were also very good.

I attended the conference with many more people from Poland. Among them were
Kamil Ziemian - the second attendee from the SLiMaK students' association, many people
from the community based around the #lisp IRC channel on Freenode and the kraklisp
Lisp group that I coordinate, many other people from Poland and the rest of the world.
Thanks to this, I was able to make many acquaintances and commence a series of inter-
views with the majority of the conference's speakers.

Summarizing the conference in a few sentences, I found the general opinions to be
rather good. From what I was able to perceive through this last week since the ELS,
many other attendeed returned home augmented and inspired by the occurrences and
experiences of the Symposium - me included.

2 Research

2.1 Interpersonal matters

I have met many wonderful, inspiring and interesting people on the ELS and was
able both to meet many members of the Lisp community; from what I observed, I also
happened to make myself known for the reasons that follow.

As I heard during the �rst day of the ELS, Lisp requires bravery. I had a chance
to prove it later during that day as I joined Nina Pali«ska, a singer and my girlfriend,
at an impromptu recital of ancient and Slavic music to entertain our guests. The idea
appeared about six hours before the event so there was little time for preparation, but the
recital happened and, from what I could perceive, was well acclaimed by the conference
participants.

During the conference, I was able to conduct a series of short impromptu interviews
that are uploaded publicly to the kraklisp Youtube channel2. I have managed to inter-
view the majority of people who gave speeches at the ELS; I hope that the material I've
gathered will serve as another short reference of what happened during the ELS and a
possible source of inspiration and information for people interested in Lisp.

2https://www.youtube.com/channel/UCymtXMj1M7cKiV9TKLoTtEg

2

https://www.youtube.com/channel/UCymtXMj1M7cKiV9TKLoTtEg


2.2 Common Lisp UltraSpec

Thanks to the hospitality of the organizers and thought put into the �ow of the
conference, both days of the conference ended with series of lightning talks. I participated
in the second one and talked about two interconnected things. The �rst was the current
problematic state of Common Lisp documentation, the second was my proposed solution
to that issue - a project that I named the Common Lisp UltraSpec3.

It is unnecessary to duplicate information from the original UltraSpec manifesto that
I posted about three months ago, although interested readers might want to read original
post4. To sum up, the original documentation is dated, scattered, lacks hyperlinking,
corrections, versioning and extensibility. I am trying to address these problems by creating
a basis upon which the existing documentation can crystallize again in a reformatted form
that's augmented and reviewed, while also being tightly knitted to all of its other modules
by a net of hyperlinks.

My personal research on the details of the form and way of the �nal documentation
continues as, after the lightning talk, I can see the UltraSpec being mentioned in various
contexts. I am glad to see a small discussion arising around the UltraSpec with all the
hopes its worries emerging around the it; they provide me with insight and tell me which
pitfalls I might want to avoid in the future.

2.3 Compiler design

A very interesting insight came from professor Christian Schafmeister from Temple
University, USA, who spoke about his research on nanomaterial design. The basis for his
research is the general un�tness of proteins as a building material for nanostructures and
the development of an arti�cial alternative - spiroligomers, or, as he calls it, molecular

Lego. His frustration with libraries and tools written in Python and pure C++ led him
to create a new Common Lisp/C++ implementation that suits his design goals - Clasp5.

Clasp is a new Common Lisp implementation that seamlessly interoperates with C++
code, making data and functions from both languages available in each other and compil-
ing both languages into homogenous intermediate representation that is then processed by
LLVM to produce executables. Along with Clasp, Christian is developing CANDO[2]6 - a
tool and Common Lisp extension specialized in molecular design, modeling, optimization,
and simulation.

Developing Clasp is particularly intriguing to me as this research project is particu-
larly innovative. This is unexplored area; there has been no previous research upon the
matter of creating a compiler for a high-level language like Common Lisp meant to freely
interoperate with libraries written in C++ and retaining most of its speed.

Christian had two presentations for the ELS, but time permitted him to show only
one of them. The talk that he gave at the conference was a direct presentation of the
capabilities of CANDO and the current outcome of his research - a nanoparticle capable

3http://phoe.tymoon.eu/clus/
4http://phoe.tymoon.eu/clus/doku.php?id=articles:manifesto
5https://github.com/drmeister/clasp
6https://github.com/drmeister/cando

3

http://phoe.tymoon.eu/clus/
http://phoe.tymoon.eu/clus/doku.php?id=articles:manifesto
https://github.com/drmeister/clasp
https://github.com/drmeister/cando


of �ltering water through reverse osmosis while being much more resilient and durable
when compared to current protein-based solutions.

The other presentation contained more information about Clasp and its implementa-
tion details. Christian showed it to me and a few other people after the conference ended
along with a simple demonstration of how one is able to write usual C++ code and expose
it to the Common Lisp language. He also showed us slides showing the current process of
compiling Common Lisp and C++ code to the AST, and pruning it of unnecessary parts
for boosting the speed a function.

Christian also talked about how it is possible to improve Clasp. Currently, Clasp uses
the Cleavir Common Lisp compiler, created by Robert Strandh as a part of SICL Common
Lisp implementation. Christian talked about how utilizing Cleavir gave Clasp a giant
speed boost, placing it within a single order of magnitude of C++ for simple computation
tests while keeping the code safe through type checks. He also mentioned how there is
still space and need for improvement within the compiler - there is the possibility of direct
type inference during compile-time for further boosting the performance of the resulting
code.

Further chat with Christian on the IRC channel ensures me that his research is in
fact exploring the unknown; the questions that he asks and which are fundamental to
his research are not answered in classical books about compiler design and need intensive
study on their own. Despite him being a professor at the Department of Chemistry,
I suspect that his current study in design and architecture of compilers might change
computer science - a discipline quite far from molecular chemistry. There is a saying that
the omnipresence of C/C++ language impeded compiler design in general by about ten
years; by creating a new compiler that is able to leverage C++'s strengths and impressive
codebase while covering its weak spots with Common Lisp expressiveness, techniques and
philosophy, Christian might be currently creating a work of compiler art that I am glad
to be able to watch and will be honored to participate in in the future.

2.4 Language bootstrapping

One more person I was able to meet at the ELS was professor Robert Strandh from
Université de Bordeaux, France; it was the �rst chance for me to meet him in person. I
had met Robert on the #lisp IRC channel months before that; he needed an apprentice
while I needed a teacher and this turn of events led me to ask him for mentorhood, which
he accepted.

I had a chance to speak with Robert after his second ELS talk, A Modern Implemen-

tation Of The LOOP Macro[3]7. Robert developed this loop implementation as a part
of working on his SICL Common Lisp implementation. A part of his talk that struck
me particularly hard is, Robert openly admitted that he utilized a full implementation of
Common Lisp in his implementation of loop - which included loop itself. This apparent
circularity puzzled me hard enough to ask him for explanation - how it was possible and
why he utilized this in such a way.

7http://metamodular.com/loop.pdf

4

http://metamodular.com/loop.pdf


He ended up explaining the process of bootstrapping parts of a language, starting with
a common myth that my mind was con�ned in as well - if one needs to write machine
code, one either has to do assembly or C; if one needs to write web browser code, one has
to write Javascript.

He explained to me how it is possible to utilize an already existing Common Lisp
implementation and its facilities, the provided loop macro and the Common Lisp Object
System (abbr. CLOS) to compile his implementation of the loop macro into Lisp code
that, when compiled, does not utilize any of the original loop macro or the CLOS facilities
- it becomes simple Lisp code that utilizes mostly tagbody and go - Lisp version of the
goto instruction known from many other languages.

Then he pointed out that once this new loopmacro is compiled, it is no longer required
to have CLOS or a di�erent loop implementation on the new system. The whole loop

is compiled into a form that only requires implementation of basic Lisp special forms:
the aforementioned tagbody and go, conditionals like cond or if and basic mutation
operators such as setq, rplaca or nconc - and only these basic parts of a Lisp system
need to be implemented on the target system.

Let me use JSCL8 as an example of a JavaScript implementation that lacks a loop

macro. Given what Robert told me, it is posssible for it to have its own loop macro
bootstrapped o� an existing Common Lisp system with only very basic Common Lisp
special operators implemented in JavaScript, which is notable on its own a very big
chance of easing its completion.

At the time of writing this document, JSCL still lacks implementations of loop, format
and CLOS. Through aforementioned bootstrapping, I consider this a chance to implement
modern and extensible versions of these complicated functions within a new and fertile
ground that is Common Lisp running on JavaScript platforms; as the world slowly con-
solidates its client-side computing towards web browsers and, therefore, JavaScript as the
main scripting language of browsers, this makes it possible for programmers to program
their code that targets web browsers in Common Lisp. As I am currently gaining experi-
ence in JavaScript, I hope that in the future I will be able to complete JSCL this way or
aid someone with achieving the same.

3 Afterword

On behalf of me and Kamil Ziemian, I would like to thank the authorities of the
Faculty of Mathematics and Computer Science of Jagiellonian University, the funders of
our participation in the conference.

I would also like to thank the organizers of the European Lisp Symposium, as it would
obviously be impossible to write this document without their wonderful work.

Many thanks also go to professor Christian Schafmeister and professor Robert Strandh
for the aforementioned insight and knowledge they shared with me and the support I feel
right now as I decide to embark on working with Lisp as my language of choice.

8https://github.com/davazp/jscl

5

https://github.com/davazp/jscl


My thanks also go to all the people who attended the ELS, the #lisp and #lisp-pl

communities, the kraklisp group and the SLiMaK and KSI students' associations for
their wonderful atmosphere of cooperation and friendliness, which allows me to participate
in their daily life with comfort and relaxation.

Nina Pali«ska of Pedagogical University, Cracow, deserves applause for her wonderful
singing during the welcome reception of the ELS held at Sunday.

Finally, I would like to thank two of my teachers, dr hab. Daniel Wilczak and dr
Wªodzimierz Moczurad from the aforementioned Faculty of Mathematics and Computer
Science of Jagiellonian University. Dr hab. Daniel Wilczak was the �rst person to show me
the basics of Scheme and to light up my interest in Lisps, while, thanks to dr Wªodzimierz
Moczurad, I gained insight into the functioning of Lisps as I was able to implement a very
simple and bug-ridden Lisp in Haskell as an assignment for the functional programming
course.

And one more thank to one certain �gment of my imagination that appeared within
my mind one day and, since then, gives me ideas and motivation necessary to continue
going forwards.

References

Available in the proceedings for the 8th European Lisp Symposium9:

[1] Christian Schafmeister. Clasp - A Common Lisp that Interoperates with C++ and Uses the LLVM

Backend. Temple University, USA, 2015.

Available in the proceedings for the 9th European Lisp Symposium10:

[2] Christian Schafmeister. CANDO - A Common Lisp based Programming Language for Computer-Aided

Nanomaterial Design and Optimization. Temple University, USA, 2016.

[3] Robert Strandh. A Modern Implementation Of The LOOP Macro. University of Bordeaux, France,

2016.

9http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
10http://dept-info.labri.fr/~idurand/ELS/ELS2016/2016.pdf

6

http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://dept-info.labri.fr/~idurand/ELS/ELS2016/2016.pdf

	Assessment
	Research
	Interpersonal matters
	Common Lisp UltraSpec
	Compiler design
	Language bootstrapping

	Afterword

