
Cr-Lohner algorithm

Daniel Wilczak1, Piotr Zgliczyński2

Jagiellonian University, Institute of Computer Science,
 Lojasiewicza 6, 30–348 Kraków, Poland

e-mail: wilczak@ii.uj.edu.pl, umzglicz@cyf-kr.edu.pl

October 3, 2010

Abstract

We present a Lohner type algorithm for the computation of rigorous
bounds for the solutions of ordinary differential equations and its deriva-
tives with respect to the initial conditions up to an arbitrary order.

Keywords: rigorous integration of ODEs, variational equations

1 Introduction

This paper is a sequel to [Z]. We present here a Lohner-type algorithm for
the computation of rigorous enclosures of the partial derivatives with respect
to the initial conditions up to an arbitrary order r of the flow induced by an
autonomous ODE, hence the name the Cr-Lohner algorithm. Let r be a positive
integer, then by the Cr-algorithm we will mean a routine which gives rigorous
estimates for the partial derivatives with respect to the initial conditions up
to the order r and by the Cr-computations we mean an application of the Cr-
algorithm.

Our main motivation for the development of the Cr-algorithm was a desire
to provide a tool, which will considerably extend the possibilities of computer
assisted proofs in the dynamics of ODEs, which require rigorous bounds on
orbits. Till now most of such proofs have used the topological conditions (see
for example [HZHT, MM, GZ, Z1]) and additionally the conditions on the first
derivatives with respect to the initial conditions (see for example [RNS, T, WZ,
KZ]), hence it required the C0- and C1-computations, respectively. The spectrum
of problems addressed includes the questions of the existence of periodic orbits
and their local uniqueness, the existence of symbolic dynamics, the existence
of hyperbolic invariants sets, the existence of homo- and heteroclinic orbits.
To address other phenomena, like the bifurcations of periodic orbits, the route
to chaos, invariant tori through the KAM theory one needs the knowledge of
partial derivatives with respect to the initial conditions of the higher order.

In principle, one can think that a good rigorous ODE solver should be
enough. Namely, to compute the partial derivatives of the flow induced by

x′ = f(x), x ∈ Rn (1)

1Research supported by an annual national scholarship for young scientists from the Foun-
dation for Polish Science

2Research supported in part by Polish State Ministry of Science and Information Technol-
ogy grant N201 024 31/2163

1

it is enough to rigorously integrate the system of variational equations obtained
by the formal differentiation of (1) with respect to the initial conditions. For
example for r = 2 we have the following system

x′ = f(x), (2)

d

dt
Vij(t) =

n∑
s=1

∂fi
∂xs

(x)Vsj(t), (3)

d

dt
Hijk(t) =

n∑
s,r=1

∂2fi
∂xs∂xr

(x)Vrk(t)Vsj(t) +
n∑

s=1

∂fi
∂xs

(x)Hsjk(x), (4)

with the initial conditions

x(0) = x0, V (0) = Id, Hijk(0) = 0, i, j, k = 1, . . . , n. (5)

It is well known that if by φ(t, x0) we denote the (local) flow induced by (1),
then

∂φi

∂xj
(t, x0) = Vi,j(t),

∂2φi

∂xj∂xk
(t, x0) = Hijk(t).

Analogous statements are true for the higher order partial derivatives with re-
spect to the initial conditions.

Remark 1 The variational equations up to an arbitrary order might be gener-
ated automatically by means of the automatic differentiation [G, Ra]. The main
reason for which we discuss in this paper an explicit compact formula for the
equations of variations (see (3,4) and Section 2) is to explain a method for the
generation of the rough enclosure for the solution of higher order variational
equations. In the practical implementation the use of any compact formulas for
variational equations can be avoided.

It turns out that a straightforward application of any rigorous ODE solver
to the system of variational equations (2–4) is very inefficient. Namely, it to-
tally ignores the structure of the system and sometimes it leads to a very poor
performance and unnecessary long computation times (see Section 3.1 for more
discussion and Section 7 for results of our tests).

Our algorithm is a modification of the Lohner algorithm [Lo], which takes
into account the structure of variational equations (2–4). Basically it consists
of the Taylor method, a heuristic routine for a priori bounds for the solution
of (2–4) during a time step and a Lohner-type control of the wrapping effect,
which is done separately for x and the partial derivatives with respect to the
initial conditions (the variables V and H in (3,4)).

The proposed algorithm has been already successfully applied to several
problems. In [KWZ] a computer assisted proof of the existence of the cocooning

2

cascade of heteroclinic tangencies for the Michelson system [Mi] was given. This
proof required the C2 computations. That time we had a special implementation
of the C2 algorithm, only.

In [WZ2] the method for proving the existence of quadratic homoclinic tan-
gencies for maps is proposed. An application of the method to a Poincaré map
for forced–damped pendulum system required C2 computations. In [WZ3] an
application of the C3 algorithm to rigorous verification of period doubling bifur-
cations for the Rössler system [R] is presented.

In [Wi] C3 and C5 computations were used to prove the existence of invariant
tori around some elliptic periodic orbits for hamiltonian and reversible systems.
The approach based on the classical KAM theorem for twist maps on the plane.

We believe, the proposed algorithm has a wide spectrum of other applica-
tions.

2 Faá di Bruno formula.

To effectively deal with the formulas involving the partial derivatives of the
composition of maps we will use extensively a notation of multiindices, multi-
pointers and submultipointers throughout the paper. In particular, when used,
the variational equations can be written in a compact form.

2.1 Multiindices

By N we will denote the set of nonnegative integers, i.e. N = {0, 1, 2, . . .}.

Definition 2 An element τ ∈ Nn will be called a multiindex.

For a sequence α = (α1, . . . , αn) ∈ Nn and a vector x = (x1, . . . , xn) ∈ Rn we
set

1. |α| = α1 + · · · + αn,

2. α! = α1 · α2 · · ·αn,

3. xα = (xα1
1 , . . . , xαn

n).

By eni ∈ Nn we will denote

eni = (0, 0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0, 0).

We will drop the index n (the dimension) in the symbol eni when it is obvious
from the context.

Put Nn
p := {a ∈ Nn : |a| = p}. For δ = (δ1, . . . , δk) ∈ Nn1 × · · · × Nnk we set

|δ| =
k∑

i=1

|δi|.

Let f = (f1, . . . , fm) : Rn → Rm be sufficiently smooth. For α ∈ Nn we set

3

1. Dαfi =
∂|α|fi

∂xα1
1 · · · ∂xαn

n
,

2. Dαf = (Dαf1, D
αf2, . . . , D

αfm).

For a function f : R× Rn → Rn by Dαfi(t, x) we will denote Dαfi(t, ·)(x) and
similarly

Dαf(t, x) = (Dαf1(t, x), . . . , Dαfn(t, x)).

This convention means that Dα always acts on x-variables.

2.2 Multipointers

For a fixed n > 0 and p > 0 we define

Nn
p = {(a1, a2, . . . , ap) ∈ Np : 1 ≤ a1 ≤ · · · ≤ ap ≤ n} ,

N = Nn =
∞∪
p=1

N n
p

Definition 3 An element of N n will be called a multipointer.

Remark 4 A function

Λ : Nn
p ∋ (a1, . . . , ap) →

p∑
i=1

enai
∈ Nn

p (6)

is a bijection.

Let f = (f1, . . . , fm) : Rn → Rm be a sufficiently smooth. For a ∈ Nn
p we set

1. Dafi =
∂pfi

∂xa1 . . . ∂xap

,

2. Daf = (Daf1, . . . , Dafm).

For a function f : R × Rn → Rn by Dafi(t, x) we will denote Dafi(t, ·)(x). In
the light of the above notations Dαf = DΛ(α)f .

For a = (a1, a2, . . . , an) ∈ Nn
p and b = (b1, b2, . . . , bn) ∈ Nn

q we define

a + b = (a1 + b1, . . . , an + bn) ∈ Nn
p+q.

For α ∈ Nn
p and β ∈ Nn

q we define

α + β = Λ−1 (Λ(α) + Λ(β)) ∈ Nn
p+q.

By ≤ we will denote a linear order (the lexicographical order) in N defined
in the following way. For a ∈ Nn

p and b ∈ Nn
q

(a ≤ b) ⇐⇒

{
either ∃i, i ≤ p, i ≤ q, ai < bi and aj = bj for j < i

or p ≤ q and ai = bi for i = 1, . . . , p.
(7)

4

Definition 5 For k ≤ p we set

N p(k) := {(δ1, . . . , δk) ∈ (N p)k : δ1 ≤ · · · ≤ δk, δ1+· · ·+δk = (1, 2, . . . , p)}. (8)

We will use N p(k) extensively in the next section. Its will be used to label
terms in Dαfi(φ(t, x)). Observe that for p > 0

N p(1) = {(1, 2, . . . , p)},
N p(p) = {((1), (2), . . . , (p))}.

One can construct all elements of N p(k) using the following recursive procedure.
From the definition of N p(k) it follows that if (δ1, . . . , δm−1) ∈ N p−1(m − 1)
then (δ1, . . . , δm−1, (p)) ∈ N p(m) (notice that order is preserved). Similarly, if
(δ1, . . . , δm) ∈ N p−1(m) then

(δ1, . . . , δs−1, δs + (p), δs+1, . . . , δm) ∈ N p(m)

and again order of elements is preserved. Hence, for p > 2 and 1 < k < p we
have N p(k) = A ∪B where

A =
{

(δ1, . . . , δk−1, (p)) : (δ1, . . . , δk−1) ∈ N p−1(k − 1)
}
,

B =
k∪

s=1

{
(δ1, . . . , δs−1, δs + (p), δs+1, . . . , δk) : (δ1, . . . , δk) ∈ N p−1(k)

} (9)

and the sets A and B are disjoint.
Another way to generate all elements of N p(k) can be described as follows

• decompose the set {1, 2, . . . , p} into k nonempty and disjoints sets ∆i,
i = 1, . . . , k,

• we sort each ∆i and permute ∆i’s to obtain min(∆1) < min(∆2) < · · · <
min(∆k),

• we define δi to be an ordered set consisting of all elements of ∆i for
i = 1, . . . , k.

Definition 6 For an arbitrary a ∈ Nn
p and δ ∈ N p

k such that k ≤ p we define a
submultipointer aδ ∈ Nn

k by (aδ)i = aδi for i = 1, . . . , k, which can be expressed
using Λ as follows

aδ := Λ−1

(
k∑

i=1

enaδi

)
∈ Nn

k .

2.3 The variational equations

Consider an ODE x′ = f(x) where f is CK+1. Let φ : D ⊂ R × Rn → Rn be
a local dynamical system induced by x′ = f(x). It is well known, that φ ∈ CK

and one can derive the equations for partial derivatives of φ by differentiating

5

equation ∂φ
∂t (t, x) = f(φ(t, x)) with respect to the initial condition x. As a

result we obtain a system of so-called equations for variations, the size of which
depends on the order r of the partial derivatives we intend to compute. An
example of such system for r = 2 is given by (2–4) with the initial conditions
given by (5).

The equations for the higher order partial derivatives written in a compact
form using multipointers and multiindices are given by the Faá di Bruno formula.

Lemma 7 ([H], Faá di Bruno formula) For any p-times continuously dif-
ferentiable functions f, g : Rn → Rn and a ∈ Nn

p we have

Da(f ◦ g) =

p∑
k=1

n∑
i1,...,ik=1

(
Dei1+···+eik fi

)
◦ g

∑
(δ1,...,δk)∈Np(k)

k∏
j=1

Daδj
gij . (10)

Proof: In the proof the functions Dei1+···+eik fi are always evaluated at
g(x), and various partial derivatives of g are always evaluated at x, therefore
the arguments will be always dropped to simplify formulae.

Put F = f ◦ g. We prove the lemma by induction on p = |a|. If p = 1 then
a = (c) for some c ∈ {1, . . . , n} and (15) becomes

D(c)F =
n∑

s=1

∂fi
∂xs

∂gs
∂xc

=
n∑

s=1

Desfi ·D(c)gs.

Assume (15) holds true for p − 1, p > 1. Let us fix a ∈ Nn
p . We have

a = b + (c), where b = (a1, . . . , ap−1) ∈ Nn
p−1 and c = ap. Since (15) is satisfied

for p− 1, therefore we have

DaFi = D(c) (DbFi)

= D(c)

p−1∑
k=1

n∑
i1,...,ik=1

β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∏
j=1

Dbδj
gij


=

p−1∑
k=1

n∑
i1,...,ik+1=1

β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑
(δ1,...,δk)∈Np−1(k)

k∏
j=1

Dbδj
gij

+

p−1∑
k=1

n∑
i1,...,ik=1

β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑
s=1

Dbδs+(c)gis

k∏
j=1,
j ̸=s

Dbδj
gij .

For k = 1, . . . , p we set

Tk :=
n∑

i1,...,ik=1

Dei1+···+eik fi
∑

(δ1,...,δk)∈Np(k)

k∏
j=1

Daδj
gij . (11)

6

Now our goal is to prove that:

DaFi =

p∑
k=1

Tk. (12)

Our strategy of proof is as follows. We will define S1, . . . , Sp, such that

DaFi =

p∑
k=1

Sk (13)

and we will show that Si = Ti for i = 1, . . . , p.
We set

S1 =
1∑

k=1

n∑
i1,...,ik=1

β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑
s=1

Dbδs+(c)gis

k∏
j=1,
j ̸=s

Dbδj
gij ,

Sp =

p−1∑
k=p−1

n∑
i1,...,ik+1=1

β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑
(δ1,...,δk)∈Np−1(k)

k∏
j=1

Dbδj
gij .

For m = 2, 3, . . . , p− 1 we set

Sm =
m−1∑

k=m−1

n∑
i1,...,ik+1=1

β:=ei1+···+eik+1

Dβfi ·D(c)gik+1

∑
(δ1,...,δk)∈Np−1(k)

k∏
j=1

Dbδj
gij

+

m∑
k=m

n∑
i1,...,ik=1

β:=ei1+···+eik

Dβfi
∑

(δ1,...,δk)∈Np−1(k)

k∑
s=1

Dbδs+(c)gis

k∏
j=1,
j ̸=s

Dbδj
gij .

There remains for us to show that Si = Ti for i = 1, . . . , p. Consider first
i = 1. Recall that N p−1(1) = {(1, 2, . . . , p− 1)}, hence

S1 =
n∑

s=1

Desfi ·Db+(c)gs =
n∑

s=1

Desfi ·Dags.

Therefore
S1 = T1. (14)

Consider now i = p. For an arbitrary s > 0 N s(s) contains only one element
((1), (2), . . . , (s)). Therefore we obtain

Sp =
n∑

i1,...,ip=1

Dei1+···+eip fi ·D(c)gip
∑

(δ1,...,δp−1)∈Np−1(p−1)

p−1∏
j=1

Dbδj
gij

=
n∑

i1,...,ip=1

Dei1+···+eip fi ·D(c)gip

p−1∏
j=1

Dbjgij .

7

Since a = b + (c), where c = (ap), we have

Sp =
n∑

i1,...,ip=1

Dei1+···+eip fi

p∏
j=1

Dajgij

=

n∑
i1,...,ip=1

Dei1+···+eip fi
∑

(δ1,...,δp)∈Np(p)

p∏
j=1

Daδj
gij = Tp.

Consider now m = 2, 3, . . . , p− 1. We have

Sm =
n∑

i1,...,im=1

Dei1+···+eim fi ·D(c)gim
∑

(δ1,...,δm−1)∈Np−1(m−1)

m−1∏
j=1

Dbδj
gij

+

n∑
i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈Np−1(m)

m∑
s=1

Dbδs+(c)gis

m∏
j=1,
j ̸=s

Dbδj
gij .

Using decomposition N p(m) = A ∪B as in (9) we obtain

Sm =
n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm−1,δm=(p))∈A

m∏
j=1

Daδj
gij

+
n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈B

m∏
j=1

Daδj
gij

=
n∑

i1,...,im=1

Dei1+···+eim fi
∑

(δ1,...,δm)∈Np(m)

m∏
j=1

Daδj
gij = Tm.

We have shown that Ti = Si for i = 1, . . . , p. This finishes the proof.

From the above lemma we have immediately

Lemma 8 Assume f ∈ Cr+1 and let φ : R × Rn−→◦ Rn be a local dynamical
system induced by x′ = f(x). Then for a ∈ Nn

p such that p ≤ r holds

d

dt
Daφi =

p∑
k=1

n∑
i1,...,ik=1

(
Dei1+···+eik fi

)
◦ φ

∑
(δ1,...,δk)∈Np(k)

k∏
j=1

Daδj
φij (15)

for i = 1, . . . , n.

Formula (15) could be seen as a direct application of the chain rule for
composition of multivariate power series. Using the automatic differentiation
tools [JZ, G, Ra] one can efficiently nonrigorously integrate ODE’s together with
higher order variational equations by means of floating point arithmetic.

The main goal of this paper is to present an efficient rigorous solver for
higher order variational equations which takes into account the structure of the
equations and the wrapping effect.

8

3 Cr-Lohner algorithm

3.1 Why one needs an Cr-algorithm?

There exist in the literature several effective algorithms for the computation of
the rigorous bounds for the solutions of ordinary differential equations, including
the Lohner method [Lo], the Hermite–Obreschkoff algorithm [NJ] or the Taylor
model [BM]. For the Cr-computations the number of equations to solve is equal

to n

(
n + r
n

)
hence, even for r = 1 the direct application of such algorithms to

the equations for variations (16) leads to the integration in the high dimensional
space and is usually inefficient. Let us recall after [Z, Sec. 6] the basic reason
for this. In order to have a good control over the expansion rate of the set of
the initial conditions during a time step these algorithms, while being C0, are C1

’internally’(or higher for the Taylor models), because they solve non-rigorously
the equations for (∂φ

∂x) - the variational matrix of the flow. This effectively
squares the dimension of phase space of the equation and impacts heavily on
the computation time. But as it was observed in [Z] the equations for the partial
derivatives of the flow can be seen as the non-autonomous and nonhomogenous
linear system of equations, therefore we do not need any additional equations
for variations for them. As a result the dimension of the effective phase space

for our Cr-algorithm is given by n

(
n + r
n

)
instead of the square of this number.

Another important aspect of the proposed algorithm is the fact that the
Lohner-type control of the wrapping effect is done separately for x-variables
and variables Daφ. This feature is not present in the naive application of C0

algorithm to the system of variational equations and it turns out that this often
practically switches off the control of the wrapping effect on x-variables, as
various choices used in this control become dominated by the Daφ-variables.

In Section 7 we will give detailed comparison of the C0-solver applied to the
equations of variations and our Cr-solver.

3.2 An outline of the algorithm

Let us fix r ≤ K and consider the following system of differential equations
d

dt
φ = f ◦ φ

d

dt
Daφ =

d∑
k=1

n∑
i1,...,ik=1

(
Dei1+···+eik f

)
◦ φ

∑
(δ1,...,δk)∈Nd(k)

k∏
j=1

Daδj
φij

(16)

for all a ∈ Nn
d , d = 1, . . . , r.

The initial conditions for (16) are
φ(0, x0) ∈ [x0] ⊂ Rn,

Dφ(0, x0) = Id,

Daφ(0, x0) = 0, for a ∈ Nn
2 ∪ . . . ∪Nn

r .

(17)

9

In the sequel we will use the following notations:

• if a solution of system (16) is defined for t > 0 and some x0 ∈ Rn, then
for a ∈ N by Va(t, x0) we denote Daφ(t, x0),

• for [x0] ⊂ Rn by [Va(t, [x0])] we will denote a set for which we have
Va(t, [x0]) ⊂ [Va(t, [x0])]. This set is obtained using an rigorous numerical
routine described below.

The Cr-Lohner algorithm is a modification of the C1-Lohner algorithm [Z].
One step of the Cr-Lohner is a shift along the trajectory of the system (16) with
the following input and output data
Input data:

• tk - a current time,

• hk - a time step,

• [xk] ⊂ Rn, such that φ(tk, [x0]) ⊂ [xk],

• [Vk,a] = [Vk,a(tk, [x0])] ⊂ Rn, such that Daφ(tk, [x0]) ⊂ [Vk,a] for a ∈
Nn

1 ∪ . . . ∪Nn
r .

Output data:

• tk+1 = tk + hk - a new current time,

• [xk+1] ⊂ Rn, such that φ(tk+1, [x0]) ⊂ [xk+1],

• [Vk+1,a] = [Vk+1,a(tk+1, [x0])] ⊂ Rn, such that Daφ(tk+1, [x0]) ⊂ [Vk+1,a]
for a ∈ Nn

1 ∪ . . . ∪N n
r .

We will often skip the arguments of Vk,a when they are obvious from the context.
The values of [xk+1] and [Vk+1,a], a ∈ N n

1 are computed using one step of
the C1-Lohner algorithm. After it is done, we perform the following operations
to compute [Vk+1,a] for a ∈ Nn

2 ∪ . . . ∪Nn
r

1. Find a rough enclosure for Daφ([0, hk], [xk]).

2. Compute [Vk+1,a], this will also involve some rearrangement computations
to reduce the wrapping effect for V [Mo, Lo].

4 Computation of a rough enclosure for Daφ

For a fixed multipointer a ∈ Nn
d Equation (16) can be written as follows

d

dt
Daφ(t, x) = Ba(t, x) + A(t, x)Daφ(t, x), (18)

10

where

Ba =

d∑
k=2

n∑
i1,...,ik=1

(
Dei1+···+eik f

)
◦ φ

∑
(δ1,...,δk)∈Nd(k)

k∏
j=1

Daδj
φij ,

A = Df ◦ φ.

(19)

The procedure for computing the rough enclosure is based on the notion of
the logarithmic norm.

Definition 9 [HNW] For a square matrix A the logarithmic norm µ(A) is de-
fined as a limit

µ(A) = lim sup
h→0+

∥Id + Ah∥ − 1

h
,

where ∥ · ∥ is a given matrix norm.

The formulas for the logarithmic norm of a real matrix in the most frequently
used norms are (see [HNW])

1. for ∥x∥1 =
∑

i |xi|, µ(A) = maxj(ajj +
∑

i ̸=j |aij |),

2. for ∥x∥2 =
√∑

i |xi|2, µ(A) is equal to the largest eigenvalue of (A +
AT)/2,

3. for ∥x∥∞ = maxi |xi|, µ(A) = maxi(aii +
∑

j ̸=i |aij |).

In order to find bounds for Daφ we use the following theorem [HNW, Thm.
I.10.6]

Theorem 10 Let x(t) be a solution of a differential equation

x′(t) = f(t, x(t)), x ∈ Rn. (20)

Let ν(t) be a piecewise differentiable function with values in Rn. Assume that

µ

(
∂f

∂x
(t, η)

)
≤ l(t) for η ∈ [x(t), ν(t)]

|ν′(t) − f(t, ν(t))| ≤ δ(t).

Then for t ≥ t0 we have

|x(t) − ν(t)| ≤ eL(t)

(
|x(t0) − ν(t0)| +

∫ t

t0

e−L(s)δ(s)ds

)
, (21)

with L(t) =
∫ t

t0
l(τ)dτ .

We apply the above theorem to Equation (18) to obtain

11

Lemma 11 Let us fix x ∈ Rn. Assume that |Ba(t, x)| ≤ δ(t) and µ(A(t, x)) ≤
l(t), then for t > t0 holds

|Daφ(t, x)| ≤ |Daφ(t0, x)|eL(t) + eL(t)

∫ t

t0

e−L(τ)δ(τ)dτ (22)

with L(t) =
∫ t

t0
l(τ)dτ .

Proof: Consider Equation (18) and a homogenous problem for (18)

d

dt
w = f(t, w) := A(t, x) · w, w ∈ Rn. (23)

Using Theorem 10 we can estimate the difference between any solution of (23),
w, and a solution of (18), denoted by Daφ.

|Daφ(t) − w(t)| ≤ |Daφ(t0) − w(t0)|eL(t) + eL(t)

∫ t

t0

e−L(τ)δ(τ)dτ. (24)

After a substitution w(t) = 0, which is a solution of the homogenous equation,
we obtain our assertion.

Usually we do not have any control over the time dependence of δ and l,
hence we will use the following

Lemma 12 Assume that |Ba(t, x)| ≤ δ and µ(A(t, x)) ≤ l for t ∈ [0, h] then
for t ∈ [0, h] we have

|Daφ(t, x)| ≤ |Daφ(0, x)|max(1, ehl) + δ
elt − 1

l
, if l ̸= 0, (25)

or
|Daφ(t, x)| ≤ |Daφ(0, x)| + δt, when l = 0. (26)

4.1 The procedure for the computation of the rough en-
closure for V .

For a ∈ Nn
1 ∪ . . . ∪ Nn

r by [Ea] we will denote the rough enclosure for the
corresponding variational equation. The procedure for the computation of the
rough enclosure [Ea] is iterative, which means that given the rough enclosure
for φ([0, hk], [xk]) and the rough enclosures Daφ([0, hk], [xk]) for all a ∈ N n

1 ∪
. . . ∪ Nn

p we are able to compute the rough enclosure for Daφ([0, hk], [xk]) for
a ∈ Nn

p+1.
The procedures for computation of the rough enclosures of φ([0, hk], [xk])

and Daφ([0, hk], [xk]) for a ∈ Nn
1 have been given in [Z]. Below we present an

algorithm for computing [Ea] for a ∈ Nn
2 ∪ . . . ∪Nn

r .
Input parameters:

• hk - a time step,

12

• [xk] ⊂ Rn - the current value of x = φ(tk, [x0]),

• [E0] ⊂ Rn - a compact and convex such that φ([0, hk], [xk]) ⊂ [E0],

• [Ea] ⊂ Rn, a ∈ Nn
1 ∪ . . . ∪ Nn

p such that Daφ([0, hk], [xk]) ⊂ [Ea] for
a ∈ Nn

1 ∪ . . . ∪Nn
p .

Output:

• [Ea] ⊂ Rn, a ∈ Nn
p+1 such that

Daφ([0, hk], [xk]) ⊂ [Ea].

Before we present an algorithm let us observe that for a fixed a ∈ Nn
p+1, Ba

defined in (19) could be seen as a multivariate function of t, x and Vb = Dbφ
for b ∈ N n

1 ∪ . . . ∪ Nn
p . More precisely, put mp := ♯

{
Nn

1 ∪ . . . ∪Nn
p

}
, where

♯ stands for the number of elements of a set. Recall that we have defined by
(7) a linear order in Nn. Hence, there is a unique sequence of multipointers
b1, . . . , bmp

, such that bi ∈ Nn
1 ∪ . . .∪Nn

p for i = 1, . . . ,mp, b1 ≤ b2 ≤ · · · ≤ bmp

and bi ̸= bj for i ̸= j.
Let us define

B̃a : R× (Rn)
mp+1 → Rn,

Fa : R× (Rn)
mp+1 → Rn

by

B̃a(t, x, vb1 , . . . , vbmp
) =

p+1∑
k=2

n∑
i1,...,ik=1

Dei1+···+eik f(φ(t, x))
∑

(δ1,...,δk)∈Np+1(k)

k∏
j=1

(
vaδj

)
ij

(27)

and

Fa(t, x, vb1 , . . . , vbm) = B̃a(t, x, vb1 , . . . , vbm) + Df(φ(t, x))Va(t, x). (28)

Algorithm:
To compute [Ea] for a ∈ Nn

p+1 we proceed as follows

1. Find l ≥
(
maxx∈[E0] µ (Df(x))

)
.

2. Compute δa ≥ max ∥B̃a∥, i.e.

δa ≥ max
(x,vb1

,...,vbmp
)∈[E0]×[Eb1

]×···×[Ebmp
]

∥∥∥B̃a(0, x, vb1 , . . . , vbmp
)
∥∥∥

For example, if a = (j, c) ∈ Nn
2 , then δa should be such that

δa ≥ max
x∈[E0],v1∈[E(1)],...,vn∈[E(n)]

∥∥∥∥∥
n∑

r,s=1

∂2f

∂xr∂xs
(x) (vj)s (vc)r

∥∥∥∥∥
13

3. Define [Ea]i = [−1, 1]δa
elt−1

l , for i = 1, . . . , n, where [Ea]i denotes i-th
coordinate of [Ea].

One can refine the obtained enclosure by

[Ea] :=
(

[0, hk]Fa

(
0, [E0], [Eb1], . . . , [Ebmp

]
))

∩ [Ea].

Indeed, from (17) we have Daφi(0, x0) = 0 for i = 1, . . . , n, x0 ∈ [E0] and for
t ∈ [0, hk] we have

Daφi(t, x0) = Daφi(t, x0) −Daφi(0, x0)

= t (Fa)i (θi, x0, Db1φ(θi, x0), . . . , Dbmp
φ(θi, x0))

= t (Fa)i (0, φ(θi, x0), Db1φ(θi, x0), . . . , Dbmp
φ(θi, x0))

for some θi ∈ [0, t] ⊂ [0, hk]. In the above we have used the fact that

Fa(t, x, v1, . . . , vmp) = Fa(0, φ(t, x), v1, . . . , vmp).

Since φ(θi, x0) ∈ [E0] and Dbjφ(θi, x0) ∈ [Ebj] for j = 1, . . . ,mp we get

Daφi(t, x0) ∈ [0, hk] (Fa)i

(
0, [E0], [Eb1], . . . , [Ebmp

]
)
.

5 Computation of [Vk+1]

5.1 Composition formulas

We apply the Faá di Bruno formula (10) to f = φ(hk, ·) and g = φ(tk, ·) to
obtain

Va(tk + hk, x0) =

p∑
k=1

n∑
i1,...,ik=1

VΛ−1(ei1+...+eik)
(hk, xk)

∑
(δ1,...,δk)∈Np(k)

k∏
j=1

(
Vaδj

)
ij

(tk, x0)

for all x0 ∈ [x0]. Using notations [Vk+1,a] := [Va(tk + hk, [x0])] and [Vk,a] =
[Va(tk, [x0])] we can rewrite the above equation as

[Vk+1,a] =

p∑
k=1

n∑
i1,...,ik=1

VΛ−1(ei1+...+eik)
(hk, [xk])

∑
(δ1,...,δk)∈Np(k)

k∏
j=1

[
Vk,aδj

]
ij
,

(29)
where Λ is defined by (6).

14

5.2 The procedure for computation of [Vk+1]

We introduce new parameters od - the order of the Taylor method used in
computations of Va for a ∈ Nn

d . It makes sense to take o1 ≥ o2 ≥ · · · ≥ or.
Input parameters:

• hk - a time step,

• [xk] ⊂ Rn - the current value of x = φ(tk, [x0]),

• [Vk,a] ⊂ Rn - a current value of Vk,a(tk, [x0]), for a ∈ Nn
1 ∪ . . . ∪Nn

r ,

• [E0] ⊂ Rn compact and convex, such that φ([0, hk], [xk]) ⊂ [E0] - a rough
enclosure for [xk],

• [Ea] ⊂ Rn, compact and convex, such that Daφ([0, hk], [xk]) ⊂ [Ea], for
a ∈ Nn

1 ∪ . . . ∪Nn
r .

Output: [Vk+1,a] ⊂ Rn, such that

Va(tk + hk, x0) ∈ [Vk+1,a] (30)

for x0 ∈ [x0] and a ∈ Nn
1 ∪ . . . ∪Nn

r .
Algorithm: We compute [Vk+1] as follows

1. Computation of Va(hk, [xk]) using the Taylor method for Equation (16), i.e.
for a ∈ Nn

p we compute

[Fa] =

op∑
i=1

hi
k

i!

di−1

dti−1
Fa(0, [xk], Vb1 , . . . , Vbmp−1

) (31)

+
hop+1

(op + 1)!

dop

dtop
Fa(0, [E0], [Eb1], . . . , [Ebmp−1

]),

where Vbi = 0 for bi ∈ Nn
2 ∪ . . . ∪ Nn

p−1 and V(j) = enj for j = 1, . . . , n.
Observe that

Va(hk, [xk]) ⊂ [Fa]. (32)

Indeed, using the Taylor series expansion we obtain that for xk ∈ [xk] and
j = 1, . . . , n holds

(Va)j(hk, xk) =

op∑
i=1

hi
k

i!

di−1

dti−1
(Fa)j(0, xk, Vb1(0, xk), . . . , Vbmp−1

(0, xk))

+
hop+1

(op + 1)!

dop

dtop
(Fa)j(θi, xk, Vb1(θi, xk), . . . , Vbmp−1

(θi, xk))

for some θi ∈ [0, hk]. Observe, that

dop

dtop
(Fa)j(θi, xk, Vb1(θi, xk), . . . , Vbmp−1

(θi, xk)) =

dop

dtop
(Fa)j(0, φ(θi, xk), Vb1(θi, xk), . . . , 0, Vbmp−1

(θi, xk)).

15

Since φ(θi, xk) ∈ [E0] and Vbs(θi, xk) ∈ [Ebs] for s = 1, . . . ,mp−1 we obtain
our assertion.

2. The composition. Put

[Jk] := ([F(1)], . . . , [F(n)])
T .

Using (29) for a ∈ Nn
p we have

[Vk+1,a] = [αa] + [Jk] · [Vk,a], (33)

where

[αa] =

p∑
k=2

n∑
i1,...,ik=1

[FΛ−1(ei1+...+eik)
]

∑
(δ1,...,δk)∈Np(k)

k∏
j=1

[
Vk,aδj

]
ij
. (34)

5.3 Rearrangement for Va - the evaluation of Equation
(33)

It is well known that a direct evaluation of Equation (33) leads to the wrapping
effect [Mo, Lo]. To avoid it, following the work of Lohner [Lo] we will use the
scheme proposed in [Z] for the C1-algorithm.

Namely, observe that Equation (33) has exactly the same structure as the
propagation equations for C1-method (see [Z, Section 3]). Moreover, all vectors
Vk,a, for a ∈ Nn

1 ∪ . . .Nn
r ’propagate’ by the same [Jk] as does the variational

part in [Z], hence it makes sense to use the same approach.
To be more precise, each set [Vk,a], for a ∈ Nn

1 ∪ . . . ∪Nn
r , is represented in

the following form

[Vk,a] = vk,a + [Bk][rk,a] + Ck[qk,a],

where [Bk] is an interval matrix, Ck is a point matrix, vk,a is a point vector and
rk,a, qk,a are interval vectors. Observe that [Bk] and Ck are independent of a.

In the sequel we will drop the index a. Equation (33) leads to

[Vk+1] = [α] + [Jk](vk + [Bk][rk] + Ck[qk]). (35)

Let m([z]) denotes a center of an interval object, i.e. [z] is interval vector or
interval matrix and let ∆([z]) = [z] −m([z]).

Let [Q] be an interval matrix which contains an orthogonal matrix. Usually,
[Q] is computed by the orthonormalisation of the columns of m([Jk][Bk]).

Let

[Z] = [Jk]Ck,

Ck+1 = m([Z]),

[Bk+1] = [Q].

16

Then we rearrange formula (35) as follows

[s] = [α] + [Jk]vk + ∆([Z])[qk],
vk+1 = m([s]),

[qk+1] = [qk],
[rk+1] = [QT]∆([s]) +

(
[QT][Jk][Bk]

)
[rk].

(36)

Summarizing, we can use the following data structure to represent φ(tk, [x0])
and Daφ(tk, [x0]), for a ∈ Nn

1 ∪ . . . ∪Nn
r

type CnSet = record

v0, r0, q0: IntervalVector;
C0, B0, C,B : IntervalMatrix;
{va, ra, qa : IntervalVector}a∈Nn

1 ∪...∪Nn
r

end;

The set φ(tk, [x0]) is represented as v0 + B0r0 + C0q0, the partial derivatives
Daφ(tk, [x0]) are represented as va+Bra+Cqa. The matrices B,C are common
for all partial derivatives.

Notice, that if we start the Cr computation with an initial condition (17) then
there is no Lipschitz part at the beginning for the partial derivatives. Hence,
the initial values for C and B are set to the identity matrix and the initial values
for qa, ra are set to zero.

If the interval vectors ra become ’thick’ (i.e. theirs diameters are larger than
some threshold value) we can set a new Lipschitz part in our representation (it
must be done simultaneously for all Daφ) and reset ra in the following way

qa = ra + (BTC)qa, for a ∈ Nn
1 ∪ . . . ∪Nn

r ,

ra = 0, for a ∈ Nn
1 ∪ . . . ∪Nn

r ,

C = B,

B = Id.

This is a place where a discontinuity (non-monotonicity) appears in the algo-
rithm. A similar change of the Lipschitz part may be done when vectors ra
become thick in comparison to qa.

6 Derivatives of Poincaré map

Consider a differential equation

x′ = f(x), x ∈ Rn, f ∈ CK+1. (37)

Let φ : R × Rn → Rn be a (local) dynamical system induced by (37). Let
α : Rn → R be C1-map. Put Π = {x | α(x) = C}.

17

Definition 13 We will say that Π is a local section for the vector field f at
y0 ∈ Π if

⟨∇α(y0)|f(y0)⟩ ̸= 0. (38)

Assume x0 ∈ Rn and t0 ∈ R are such that Π is a local section at φ(t0, x0).
Consider an implicit equation

α(φ(tP (x), x)) = C. (39)

It follows easily from (38) and from the implicit function theorem that there
exists a uniquely defined tP : Rn−→◦ R in a neighborhood of x0, such that
tP (x0) = t0. The function tP is as smooth as the flow φ. We will refer to
tP as to the Poincare return time to section Π.

We define a Poincaré map P : Rn ⊃ dom (tP) → Rn by

P (x) = φ(tP (x), x). (40)

Usually the Poincaré map is defined as a map P : Π1−→◦ Π2, where Π1,Π2 are
some local sections in Rn. The approach taken here, i.e. treating the Poincaré
map as map P : Rn−→◦ Rn allows us to not to worry about the coordinates on
the local section.

We are interested in the partial derivatives of P defined by (40).
From (40) we obtain

∂Pi

∂xj
(x) = fi(P (x))

∂tP
∂xj

(x) +
∂φi

∂xj
(tP (x), x). (41)

We need ∂tP
∂xj

. We differentiate (39) to obtain

n∑
k=1

∂α

∂xk
(P (x))

(
fk(P (x))

∂tP
∂xj

(x) +
∂φk

∂xj
(tP (x), x)

)
= 0,

⟨∇α(P (x))|f(P (x))⟩ ∂tP
∂xj

(x) +

n∑
k=1

∂α

∂xk
(P (x))

∂φk

∂xj
(tP (x), x) = 0. (42)

Hence

∂tP
∂xj

(x) = − 1

⟨∇α(P (x))|f(P (x))⟩

n∑
k=1

∂α

∂xk
(P (x))

∂φk

∂xj
(tP (x), x). (43)

6.1 Higher order derivatives of the Poincaré map

To make formulas transparent we will drop arguments of functions in this sec-
tion, but reader should be aware that for tP and its partial derivatives the
argument is x, for φ and Daφ the argument is always the pair (tP (x), x).

From (41) we obtain

D(j,c)P =
∂2

∂t2
φD(j)tPD(c)tP +

∂

∂t
D(c)φD(j)tP +

∂

∂t
φD(j,c)tP

+
∂

∂t
D(j)φD(c)tP + D(j,c)φ.

18

It is easy to see that partial derivatives of high order give rise to quite complex
expressions and it is not entirely obvious how to organize it in some coherent
and programmable way. For this purpose we use the following

Lemma 14 For a multipointer a ∈ Nn
p we have

DaP = Daφ + ∂φ
∂t DatP

+
∑p

k=2
∂kφ
∂tk

∑
(δ1,...,δk)∈Np(k)

∏k
j=1 Daδj

tP

+
∑p

k=2

∑
(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Daδs
φ
∏

j ̸=s Daδj
tP .

(44)

Proof: By induction on p. For p = 1 formula (44) is equivalent to (41), because
the two last sums are taken over empty set. Assume (44) holds true for some
p ≥ 1 and fix a ∈ Nn

p+1. Our goal is to show that

DaP = R1 + R2 + R3,

where

R1 = Daφ +
∂

∂t
φDatP ,

R2 =

p+1∑
k=2

∂k

∂tk
φ

∑
(δ1,...,δk)∈Np+1(k)

k∏
j=1

Daδj
tP ,

R3 =

p+1∑
k=2

∑
(δ1,...,δk)∈Np+1(k)

k∑
s=1

∂k−1

∂tk−1
Daδs

φ
∏
j ̸=s

Daδj
tP .

Write a = β + γ, where β ∈ Nn
p and γ = (ap+1) ∈ Nn

1 . From the induction
assumption we have

DaP = Dγ

(
Dβφ + ∂

∂tφDβtP
)

+ Dγ

(∑p
k=2

∂k

∂tk
φ
∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP

)
+ Dγ

(∑p
k=2

∑
(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Dβδs
φ
∏

j ̸=s Dβδj
tP

)
=

∑10
i=1 Si,

19

where

S1 = Daφ + ∂
∂tφDatP ,

S2 = ∂
∂tDβφDγtP ,

S3 = ∂2

∂t2φDβtPDγtP ,
S4 = ∂

∂tDγφDβtP ,

S5 =
∑p

k=2
∂k

∂tk
Dγφ

∑
(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP ,

S6 =
∑p

k=2
∂k+1

∂tk+1φDγtP
∑

(δ1,...,δk)∈Np(k)

∏k
j=1 Dβδj

tP ,

S7 =
∑p

k=2
∂k

∂tk
φ
∑

(δ1,...,δk)∈Np(k)

∑k
s=1 Dβδs+γtP

∏k
j=1
j ̸=s

Dβδj
tP ,

S8 =
∑p

k=2

∑
(δ1,...,δk)∈Np(k)

∑k
s=1

∂k−1

∂tk−1Dβδs+γφ
∏

j ̸=s Dβδj
tP ,

S9 =
∑p

k=2

∑
(δ1,...,δk)∈Np(k)

∑k
s=1

∂k

∂tk
Dβδs

φDγtP
∏

j ̸=s Dβδj
tP ,

S10 =
∑p

k=2

∑
(δ1,...,δk)∈Np(k)∑k

s=1

∑k
r=1
r ̸=s

∂k−1

∂tk−1Dβδs
φDβδr+γtP

∏
j ̸=s
j ̸=r

Dβδj
tP .

Obviously R1 = S1. We will show that R2 = S3 + S6 + S7 and R3 = S2 + S4 +
S5 + S8 + S9 + S10.

Denote by Ri,k, i = 2, 3 a part of sum Ri with fixed k = 2, . . . , p + 1.
Similarly, let us denote by Si,k a part of sum Si, i = 5, . . . , 10, for k = 2, . . . , p.

Using decomposition of N p+1(2) as in (9) we obtain that R2,2 = S3 + S7,2.
Similarly, using (9) we observe that R2,k = S6,k−1 + S7,k for k = 3, . . . , p.
Finally, since N p+1(p + 1) = {((1), (2), . . . , (p + 1))} and γ = (ap+1) we find
that R2,p+1 = S6,p. This shows that R2 = S3 + S6 + S7.

It remains to show that R3 = S2 +S4 +S5 +S8 +S9 +S10. We will classify
possible terms by the fact, where p + 1 appears in δi, i = 1, . . . , k and how this
δi enters in R3 as δs or δj . There are four cases

1. δs = (p + 1),

2. δj = (p + 1),

3. p + 1 ∈ δs, |δs| ≥ 2,

4. p + 1 ∈ δj , |δj | ≥ 2.

Let us fix k = 2. Let (δ1, δ2) ∈ N p+1(2). The term for case 1 is S4, for case 2
is S2, case 3 is S8,2 and case 4 is S10,2. Hence, R3,2 = S2 + S4 + S8,2 + S10,2.

For k = 3, . . . , p and fixed (δ1, . . . , δk) ∈ N p+1(k) we have: case 1 is given
by S5,k−1, case 2 by S9,k−1, case 3 by S8,k and case 4 by S10,k Hence, for
k = 3, . . . , p we have R3,k = S5,k−1 + S9,k−1 + S8,k + S10,k.

Finally, for k = p + 1 we observe, that R3,p+1 = S5,p + S9,p. Indeed, in this
case (δ1, . . . , δp+1) = ((1), (2), . . . , (p + 1)). Hence, either for δs = γ we have
term S5,p and δs ̸= γ we have S9,p.

We have showed that R3 = S2 + S4 + S5 + S8 + S9 + S10 and the proof is
finished.

20

Hence, if we know all the partial derivatives of tP up order p we can compute
the partial derivatives of the Poincaré map up the same order. In the next
subsection we show how to compute partial derivatives of tP for affine sections.

6.2 Partial derivatives of tP for affine sections

Assume α : Rn → R is an affine map given by

α(x) = α0 +
n∑

i=1

αixi.

This is a quite restrictive assumption about sections, but it leads to relatively
simple formulas for DatP and it is sufficient for the applications we have in
mind.

Lemma 15 For a multipointer a ∈ Nn
p holds

−DatP

⟨
∇α| ∂

∂t
φ

⟩
=

⟨∇α|Daφ⟩ +

p∑
k=2

⟨
∇α| ∂

k

∂tk
φ

⟩ ∑
(δ1,...,δk)∈Np(k)

k∏
j=1

Daδj
tP

+

p∑
k=2

∑
(δ1,...,δk)∈Np(k)

k∑
s=1

⟨
∇α| ∂

k−1

∂tk−1
Daδs

φ

⟩∏
j ̸=s

Daδj
tP .

Proof: The proof is a direct consequence of Lemma 14 and (39). Since α is
affine, by differentiating of α(P (x)) = C we get ⟨∇α|DaP ⟩ = 0. Using formula
(44) for DaP we obtain our assertion.

Fix [x] ⊂ Rn and assume we have a rigorous bound for tP ([x]) ∈ [t1, t2] (see
[Z, Section 6] for more details on this). Lemmas 15 and 14 show that given rigor-

ous bounds for the partial derivatives Daφ([t1, t2], [x]) and ∂k

∂tk
Daφ([t1, t2], [x])

up to some order p we can compute recursively rigorous bounds for the partial

derivatives of tP ([x]) and P ([x]) up to the same order. Notice, that ∂k

∂tk
Daφ are

given by Taylor coefficients of the solution of (16) with initial conditions P ([x])
for C0 part and Daφ(tP (x), [x]) for equations for variations. Hence, these coef-
ficients can be easily computed using the automatic differentiation algorithm.

7 Comparison to C0-solver.

In this section we present results of comparison of the C0-solver applied to the
second order variational equations with C2-solver. We performed tests of these
algorithms on some classical low dimensional examples, such as the Volterra-
Lotka system {

ẋ = x(2 − y),

ẏ = y(x− 3),
(45)

21

the pendulum equation
ẍ = − sin(x), (46)

the Lorenz system 
ẋ = 10(−x + y),

ẏ = 28x− y − xz,

ż = xy − 8
3z,

(47)

the Michelson system
...
x + ẋ +

1

2
x2 = 1, (48)

the Rössler system 
ẋ = −(y + z),

ẏ = x + 0.2y,

ż = 0.2 + z(x− 5.7),

(49)

and for the Hénon-Heiles system (Hamiltonian equation){
ẍ = −x− 2xy,

ÿ = y2 − y − x2.
(50)

General settings of the tests.

• We integrate the above systems together with second and third order
variational equations along periodic orbits using C2, C3 and C0 solvers
from the CAPD library [CAPD] to obtain bounds for the higher order
derivatives. These periodic orbits are presented in Fig. 1. In each case
the time of integration is equal to an approximate period of the orbit. We
believe that this is a relevant time scale for the computer assisted proofs
for these systems.

• When integrating the systems of variational equations using the C0 solver
we simply add the variational equations to the main equations and apply

the C0 solver to the extended system that has dimension n

(
n + k
k

)
,

where n is the dimension of the main problem and k is order of derivatives
we require.

• For each ODE (45)-(50) we set as initial conditions to each routine three
boxes of diameters 0, 10−10 and 10−6 centered at a point very close to the
corresponding periodic solution. The actual initial conditions are given in
the caption of Fig. 1.

• In each case we use the Taylor method of the order 20 with variable
time step. The minimal acceptable time step has been set to 10−5. The
computations were performed using the interval arithmetic with double

precision.

22

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Voltera-Lotka system

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

pendulum equation

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

Michelson system

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

Lorenz system

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8 10

Rossler system

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Henon-Heiles system

Figure 1: Periodic orbits for the systems (45-50). The initial conditions
are: (2.5, 1.5) for the Volterra-Lotka system, (0.5, 0.5) for pendulum equation,
(0, 1.52596, 0) for the Michelson system, (−2.14737, 2.07805, 27) for the Lorenz
system, (0.,−8.3809417428298, 0.029590060630665) for the Rössler system and
(x, y, ẋ, ẏ) = (0, 0.10903, 0, 0.567723) for the Hénon-Heiles system.

23

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 1 2 3 4 5 6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 1 2 3 4 5 6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 2: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the Volterra-

Lotka system (45) obtained from C0 and Cr solvers for various diameters of
initial conditions.

24

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 3: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the pendulum

equation (46) obtained from C0 and Cr solvers for various diameters of initial
conditions.

25

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-15

-10

-5

 0

 5

 10

 15

 0 1 2 3 4 5 6 7

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 4: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the Michelson

system (48) obtained from C0 and Cr solvers for various diameters of initial
conditions.

26

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 5: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the Lorenz

system (47) obtained from C0 and Cr solvers for various diameters of initial
conditions.

27

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1 2 3 4 5 6

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 1 2 3 4 5 6

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 6: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the Rössler

system (49) obtained from C0 and Cr solvers for various diameters of initial
conditions.

28

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10 12 14

diam(x0)=0, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-15

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10 12 14

diam(x0)=0, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

-15

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14

diam(x0)=10
-10

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

diam(x0)=10
-10

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

diam(x0)=10
-6

, r([D
2φ(x0,t)])

C
0
-solver

C
2
-solver

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

diam(x0)=10
-6

, r([D
3φ(x0,t)])

C
0
-solver

C
3
-solver

Figure 7: Plots of t → r
(
[D2ϕ(x0, t)]

)
and t → r

(
[D3ϕ(x0, t)]

)
for the Hénon-

Heiles system (50) obtained from C0 and Cr solvers for various diameters of
initial conditions.

29

The system second order derivatives third order derivatives

C2-solver C0-solver ratio C3-solver C0-solver ratio

V-L 0.30 4.89 16 0.61 25.35 41

pendulum 0.09 1.96 21 0.21 9.71 46

Michelson 0.20 25.30 126 0.51 237.14 464

Lorenz 1.22 81.59 66 3.48 762.34 219

Rössler 0.71 58.96 83 1.87 521.37 278

H-H 1.40 430.21 – 4.96 3001.63 –

Table 1: Comparison of the time of computation of C2 and C3 solvers and of C0-
solver when applied to the equations for variations. All the times of computation
are given in seconds.

Comparison of the time of computations. As it is expected the C2 and
C3 solvers are much faster than C0 applied to the equations for variations. In
Table 1 we present the time of computation (in seconds) for each problem when
computed from a point initial condition (diam(x0) = 0). For 2-3 dimensional
systems the speed up of the computation of second order derivatives was between
16 and 126. For the third order derivatives it is even larger and varies between
41 and 464.

For the Hénon-Heiles Hamiltonian the C0-solver was not able to integrate
along the periodic solution neither second nor third order derivatives even when
starting from a point initial condition. In Table 1 we put gathered the times of
computation up to the blow-up which occurred at t = 8.32874 for the second
order derivatives and t = 3.6712 for the third order derivatives. The total time
of integration for this system has been set to T = 13.

Comparison of the obtained enclosures. For an interval x = [a, b] we define
a function

r(x) = − log10

(
b− a

|mid(x)|

)
= − log10

(
2(b− a)

|a + b|

)
.

For an interval x = [a, b] that does not contain zero, the function r measures a
relative diameter of x, i.e. an approximate number of significant decimal digits
that are the same for a and b.

With some abuse of notation we will denote by the same letter a relative
diameter of an interval vector [u] ⊂ Rm, i.e.

r([u]) = min {r([u]i) : i = 1, . . . ,m}

and of an enclosure of k-th order derivative of a smooth function f

r
(
[Dkf(x)]

)
= min {r ([Daf(x)]) : |a| = k} .

30

In Figures 2–7 we present plots of the relative diameters of r
(
D2ϕ(x0, t)

)
and r

(
D3ϕ(x0, t)

)
as a function of time t obtained from C0 and Cr solvers for

various diameters of initial conditions and for the systems (45–50). Here ϕ
denotes the local flow induced by the equation under consideration.

In principle, our Cr-algorithm may be less accurate than the C0-Lohner direct
solver in the computation of Daφ for |a| ≥ 1, because we do not make use of
the dependence of Daφ on x. Indeed, this can be seen for lower dimensional
systems. But we have paid for this with the serious increase of the computation
times.

For point initial conditions this lack of accuracy can be compensated by
switching to the multiprecision arithmetic. In fact, for the systems under con-
sideration we were able to obtain much thinner enclosures for derivatives using
higher precision and within comparable or better time of computations.

For the initial conditions of nonzero diameters one can subdivide the sets.
In many cases this strategy allows us to obtain better accuracy within same or
better time. In some cases, like the Volterra-Lotka system (45) and the Lorenz
system (47) obtained enclosures are significantly better when integrating the
variational equations using the C0 solver. For these systems and low order
derivatives one can choose between C0 and Cr solvers depending on the required
accuracy of the result.

On the other hand, the C0 solver were not able to integrate third order
derivatives for the Lorenz and Michelson systems when diam(x0) = 10−6.

For higher dimensional systems, like the Hénon-Heiles Hamiltonian we see
that the C0-solver cannot compete with Cr-algorithm. Both, the time of compu-
tation and obtained enclosures for second and third order derivatives are worse
than those resulting from the Cr-solver.

Memory usage. We would like to mention that the direct C0-solver when
applied to the equations for variations requires also a huge memory. This is due
to the fact, that the C0 solver extended by k-th order variational equations builds

a tree for automatic differentiation for the system in n

(
n + k

k

)
-dimensional

space and also its derivative. This squares the effective dimension for C0 solver.
For the Hénon-Heiles system (50) and the third order derivatives the C0 solver
used 22.31MB of RAM while C3 solver used 416kB, only.

Conclusions. The proposed algorithm has been proved to be very useful in
many applications [KWZ, Wi, WZ2, WZ3]. In these papers we applied our
C2 −C5-algorithms to study various kind of dynamic and bifurcations of ODEs.
In all of these applications the desired accuracy of computed derivatives was
not that large as we usually require for the C0 image of the set – only a very
few significant digits were necessary to get the result. Our tests show that Cr

solver can compute high order derivatives with acceptable accuracy in a very
good CPU time.

Our tests show also, that when the high accuracy of derivatives is required,

31

the C0 solver applied to the equations for variations can compete with Cr solvers
for low dimensional systems and for low order derivatives, only. This is due to:

• loss of control of the wrapping effect in the C0 solver when the dimension
is really high,

• memory usage. For example, using our C5 solver we integrated along a
periodic solution the fifth order derivatives of a Hamiltonian flow (n-body
problem) in 8 dimensions. The program used 7GB of RAM. We were not
able to build the C0 solver for fifth order derivatives on a computer with
64GB of memory.

• Even if possible to build the necessary objects in the memory, the time of
computations for large problems would be very large.

References

[A] G. Alefeld, Inclusion methods for systems of nonlinear equations - the
interval Newton method and modifications, in Topics in Validated Com-
putations, J. Herzberger (Editor), Elsevier Science B.V., 1994, pages
7–26

[BHS] H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-periodicity in
families of dynamical systems: order amidst chaos, Lecture Notes in
Mathematics, Vol. 1645, Springer Verlag, (1996).

[BM] M. Berz, K. Makino, New Methods for High-Dimensional Verified
Quadrature, Reliable Computing, 5, 13-22 (1999)

[CAPD] CAPD – Computer Assisted Proofs in Dynamics group, a C++ pack-
age for rigorous numerics, http://capd.wsb-nlu.edu.pl.

[G] A. Griewank, Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation, Frontiers in Applied Mathematics 19. SIAM,
2000.

[GZ] Z. Galias, P. Zgliczyński, Computer assisted proof of chaos in the
Lorenz system, Physica D, 115, 1998,165–188

[JZ] Àngel Jorba, Maorong Zou, A software package for the numerical inte-
gration of ODE by means of high-order Taylor methods, Experimental
Mathematics 14, pp. 99-117 (2005).

[H] Michael Hardy, Combinatorics of Partial Derivatives, Electronic Jour-
nal of Combinatorics, 13 (2006), #R1.

[HNW] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential
Equations I, Nonstiff Problems, Springer-Verlag, Berlin Heidelberg
1987.

32

[HZHT] B. Hassard, J. Zhang, S. Hastings, W. Troy, A computer proof that
the Lorenz equations have ”chaotic” solutions, Appl. Math. Letters, 7
(1994), 79–83

[KZ] T. Kapela, P. Zgliczyński, The existence of simple choreographies for
N-body problem - a computer assisted proof, Nonlinearity, 16 (2003),
1899-1918

[KWZ] H. Kokubu, D.Wilczak, P. Zgliczyński, Rigorous verification of cocoon
bifurcations in the Michelson system, Nonlinearity, 20 (2007), 2147-
2174.

[Lo] R.J. Lohner, Computation of Guaranteed Enclosures for the Solutions
of Ordinary Initial and Boundary Value Problems, in: Computational
Ordinary Differential Equations, J.R. Cash, I. Gladwell Eds., Claren-
don Press, Oxford, 1992.

[Mi] D. Michelson, Steady solutions of the Kuramoto–Sivashinsky equation,
Physica D, 19, (1986) 89-111.

[Mo] R.E. Moore, Interval Analysis. Prentice Hall, Englewood Cliffs, N.J.,
1966

[MM] K. Mischaikow, M. Mrozek, Chaos in the Lorenz equations: A com-
puter assisted proof. Part II: Details, Mathematics of Computation,
67, (1998), 1023–1046

[MZ] M. Mrozek, P. Zgliczyński, Set arithmetic and the enclosing problem
in dynamics, Annales Pol. Math., 2000, 237–259

[NJ] N. S. Nedialkov, K. R. Jackson, An Interval Hermite – Obreschkoff
Method for Computing Rigorous Bounds on the Solution of an Initial
Value Problem for an Ordinary Differential Equation, chapter in the
book Developments in Reliable Computing, editor T. Csendes, 289-310,
Kluwer, Dordrecht, Netherlands, 1999.

[N] A. Neumeier, Interval methods for systems of equations, Cambridge
University Press, 1990.

[Ra] L.B. Rall, Automatic Differentiation: Techniques and Applications,
Vol. 120 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
1981.

[RNS] T. Rage, A. Neumaier, C. Schlier, Rigorous verification of chaos in a
molecular model, Phys. Rev. E 50 (1994), 2682–2688.

[R] O.E. Rössler, An Equation for Continuous Chaos, Physics Letters Vol.
57A no 5, pp 397–398, 1976.

[T] W. Tucker, A Rigorous ODE solver and Smale’s 14th Problem, Foun-
dations of Computational Mathematics, (2002), Vol. 2, Num. 1, 53-117

33

[W] W. Walter, Differential and integral inequalities, Springer-Verlag
Berlin Heidelberg New York, 1970

[Wi] D. Wilczak, Rigorous normal forms and the existence of KAM invari-
ant curves for Poincaré maps, in review.

[Wi3] D. Wilczak, Symmetric heteroclinic connections in the Michelson sys-
tem – a computer assisted proof, SIAM J. App. Dyn. Sys., Vol.4, No.3,
489-514 (2005).

[WZ] D. Wilczak and P. Zgliczyński, Heteroclinic Connections between Pe-
riodic Orbits in Planar Restricted Circular Three Body Problem - A
Computer Assisted Proof, Commun. Math. Phys. 234, 37-75 (2003).

[WZ2] D. Wilczak and P. Zgliczyński, Computer assisted proof of the existence
of homoclinic tangency for the Henon map and for the forced-damped
pendulum, SIAM J. App. Dyn. Sys. 8, No 4, 1632–1663 (2009).

[WZ3] D. Wilczak and P. Zgliczyński. Period doubling in the Rössler system
- a computer assisted proof. Found. Comp. Math. 9 (2009) 611–649.

[Z1] P. Zgliczyński, Computer assisted proof of chaos in the Hénon map and
in the Rössler equations, Nonlinearity, 1997, Vol. 10, No. 1, 243–252

[Z] P. Zgliczyński, C1-Lohner algorithm, Foundations of Computational
Mathematics, (2002) 2:429–465

34

