
1 Local Brouwer degree

Let D ⊂ Rn be an open set and f : S → Rn be continuous, D ⊂ S and c ∈ Rn.
Suppose that

the set f−1(c) ∩D is compact. (1)

Then the local Brouwer degree of f at c in the set D is defined. We denote it
by deg(f, D, c).

If D ⊂ dom(f) and D is compact, then (1) follows from the condition

c /∈ f(∂D) (2)

Properties:

Degree is an integer.
deg(f, D, c) ∈ Z. (3)

Solution property.

If deg(f, D, c) 6= 0, then there exists x ∈ D with f(x) = c. (4)

Homotopy property. Let H : [0, 1]×D → Rn be continuous. Suppose that
⋃

λ∈[0,1]

H−1
λ (c) ∩D is compact (5)

Then
∀λ ∈ [0, 1] deg(Hλ, D, c) = deg(H0, D, c) (6)

If [0, 1] × D ⊂ dom(H) and D is compact, then (5) follows from the
following condition

c /∈ H([0, 1], ∂D) (7)

Local degree is a locally constant function. Assume D is bounded and open.
If p and q belong to the same component of Rn \ f(∂D), then

deg(f, D, p) = deg(f, D, q) (8)

Excision property. Suppose that E ⊂ D, E is open and

f−1(c) ∩D ⊂ E (9)

Then
deg(f,E, c) = deg(f, D, c). (10)

Local degree for affine maps. Suppose that f(x) = A(x− x0) + c, where A
is a linear map and x0 ∈ Rn. If the equation A(x) = 0 has no nontrivial
solutions (i.e. if Ax = 0, then x = 0) and x0 ∈ D, then

deg(f, D, c) = sgn(det A), (11)
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Product property Let Ui ⊂ Rni , ci ∈ Rni , fi : Ui → Rni , for i = 1, 2.
The map (f1, f2) : Rn1 × Rn2 → Rn1 × Rn2 is given by (f1, f2)(x1, x2) =
(f1(x1), f2(x2). We have

deg((f1, f2), U1 × U2, (c1, c2)) = deg(f1, U1, c1) · deg(f2, U2, c2), (12)

whenever the right hand side is defined.

Multiplication property Let D ⊂ Rn be bounded and open. Let f : D̄ ⊂
Rn → Rn, g : Rn → Rn are two continuous mappings and ∆i the bounded
components of Rn \ f(∂D). Then

deg(g ◦ f, D, p) =
∑

∆i

deg(g, ∆i, p) deg(f,D, ∆i), (13)

where deg(f,D, ∆i) = deg(f, D, qi) for some qi ∈ ∆i. From equation (8) it
follows that this definition of deg(f, D, ∆i) does not depend on the choice
of qi.

Addition property. If D =
⋃

i∈I Di, where each Di is open, the family {Di}
is disjoint and ∂Di ⊂ ∂D, then for every c /∈ f(∂D):

deg(f, D, c) =
∑

i∈I

deg(f,Di, c). (14)

From Multiplication property and formula (11) we obtain immediately

Collorary 1 Let D ⊂ Rn be open and bounded. Let A : D → Rn, be continuous
and 0 /∈ A(∂D),

deg(−A,U, 0) = (−1)n deg(A,U, 0), (15)

As the consequence of Addition and Excision property we obtain the follow-
ing

Collorary 2 Suppose that D is a finite union of open sets D =
⋃n

i=1 Di such
that the sets f−1

|Di
(c) are mutually disjoint and c /∈ f(∂Di). Then

deg(f, D, c) =
n∑

i=1

deg(f|Di
, Di, c) (16)

Here is another important consequence of above properties

Collorary 3 Assume V ⊂ Rn is bounded and open. Let f : V → Rn be a
C1-map. Assume that c ∈ Rn \ f(∂V ) is a regular value for f , i.e. for each
x ∈ f−1(c) the Jacobian matrix of f at x denoted by Df(x) is nonsingular, then

deg(f, V, c) =
∑

x∈f−1(c)

sgn (detDf(x))
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2 Fixed point index

U ⊂ Rn open.
f : U → Rn continuous map is admissible if

Fix(f) = {x ∈ U : f(x) = x} (17)

is compact.
If U ⊂ dom(f) and U is compact, then (17) follows from the condition

f(x) 6= x, for x ∈ ∂D (18)

Assume that f : U → X is admissible, compact map. Then we define the
fixed point index of f in U by

I(f, U) = deg(I − f, U, 0) ∈ Z,

Properties:

Excision If U
′ ⊂ U and Fix(f) ⊂ U

′
, then

ind(f, U) = ind(f, U
′
). (19)

Fixed points If ind(f, U) 6= 0, then Fix(f) 6= ∅.
Homotopy property Continuous homotopy ht : U → X is admissible when⋃1

t=0 Fix(ht) is compact.

If ht : U → X is an admissible homotopy, then ind(h0, U) = ind(h1, U).

Fixed point index for affine maps. Suppose that f(x) = A(x − x0) + x0,
where A is a linear map and x0 ∈ Rn. If the equation (Id−A)(x) = 0 has
no nontrivial solutions (i.e. if Ax = x, then x = 0) and x0 ∈ D, then

(ind)(f,D) = sgn(det(Id−A)), (20)

Multiplicativity If f1 : U1 → X1 and f2 : U2 → X2 are admissible, then the
product f1 × f2 : U1 × U2 → X1 ×X2 is admissible and

ind(f1 × f2, U1 × U2) = ind(f1, U1) ind(f2, U2). (21)

Commutativity Let U ⊂ X and U ′ ⊂ X ′ be open and assume that f : U →
X ′, g : U ′ → X are continuous. If one of the composites

gf : V = f−1(U ′) → X, fg : V ′ = g−1(U) → X ′,

is admissible, then so is the other and, in that case,

ind(gf, V ) = ind(fg, V ′). (22)

3



2.1 The degree of maps Sn → Sn

In this section we recall some relevant facts on the degree of maps Sn → Sn see
for example [?, Ch. 7.5].

Definition 1 Let n ≥ 1. The degree of a map continuous f : Sn → Sn is a
unique integer d(f) such that f∗(u) = d(f) · u, for any generator u ∈ Hn(Sn),
where Hn(Sn) is n-th homology group of Sn and f∗ : Hn(Sn) → Hn(Sn) is the
induced homomorphism.

For n = 0 we define the degree, d(f), as follows, S0 = {−1, 1}. We set

d(f) =





1, if f(1) = 1 and f(−1) = −1,

−1, if f(1) = −1 and f(−1) = 1,

0, otherwise.
(23)

Theorem 4 (H. Hopf) Let n ≥ 1. Then f, g : Sn → Sn are homotopic if and
only if d(f) = d(g).

Lemma 5 Let u > 0, Assume that A : Bu(0, 1) → Ru is a continuous map,
such that

0 /∈ A(∂B(0, 1))

Let the map sA : Su−1 → Su−1 be given by

sA(x) =
A(x)
‖A(x)‖ .

Then
deg(A,Bu(0, 1), 0) = d(sA) (24)

3 Covering relations, the simple case

Notation: For a given norm in Rn, by Bn(c, r) we denote the open ball of
radius r centered at c ∈ Rn. When the dimension n is obvious from the context,
we will drop the subscript n. Let Sn(c, r) = ∂Bn+1(c, r), by the symbol Sn we
will denote Sn(0, 1). We set R0 = {0}, B0(0, r) = {0}, ∂B0(0, r) = ∅.

For a given set Z, by intZ, Z, ∂Z we denote the interior, the closure and the
boundary of Z, respectively. For a map h : [0, 1]× Z → Rn, we set ht = h(t, ·).
By Id we denote the identity map. For a map f , by dom(f) we will denote
the domain of f . If f : Ω ⊂ Rn → Rn is a continuous map, we say that
X ⊂ dom (f−1) iff the map f−1 : X → Rn is well defined and continuous.

Definition 2 An h-set is a quadruple consisting of

• a compact subset N of Rn,

• a pair of numbers u(N), s(N) ∈ {0, 1, 2, . . . }, with u(N) + s(N) = n,
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• a homeomorphism cN : Rn → Rn = Ru(N) × Rs(N), such that

cN (N) = Bu(N)(0, 1)×Bs(N)(0, 1).

With an abuse of notation, we will denote such a quadruple by N . We denote

Nc = Bu(N)(0, 1)×Bs(N)(0, 1),

N−
c = ∂Bu(N)(0, 1)×Bs(N)(0, 1),

N+
c = Bu(N)(0, 1)× ∂Bs(N)(0, 1),

N− = c−1
N (N−

c ), N+ = c−1
N (N+

c ).

Hence an h-set N is a product of two closed balls with respect to some
coordinate system. The numbers u(N) and s(N) stand for the dimensions of
nominally unstable and stable directions, respectively. The subscript c refers
to the new coordinates given by homeomorphism cN . Notice that if u(N) = 0,
then N− = ∅ and if s(N) = 0, then N+ = ∅.

Definition 3 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rn be a continuous map. Let fc = cM ◦f ◦c−1

N :
Nc → Ru × Rs. We say that

N
f

=⇒ M

(N f -covers M) iff the following conditions are satisfied

1. There exists a continuous homotopy h : [0, 1]×Nc → Ru ×Rs, such that the
following conditions hold true

h0 = fc,

h([0, 1], N−
c ) ∩Mc = ∅,

h([0, 1], Nc) ∩M+
c = ∅.

2. There exists a linear map A : Ru → Ru, such that

h1(p, q) = (Ap, 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (25)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (26)

In the context of the above definition we will call the map h1 a model map
for the relation N

f
=⇒ M .

Remark 6 When u > 0, then condition (26) is equivalent to each of the fol-
lowing conditions

Bu(0, 1) ⊂ A(Bu(0, 1)),
‖Ap‖ > 1, for p ∈ ∂Bu(0, 1),
‖Ap‖ > ‖p‖, for p 6= 0.
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Remark 7 When u = 0, then Ru = {0} and so A : Ru → Ru is given by
A(0) = 0. Taking into account that ∂Bu(0, 1) = ∅, we see that the second part
of (26) is vacuously satisfied, and so condition (26) is equivalent to h1(x) = 0

for all x. It is easy to see that, in this case, N
f

=⇒ M iff f(N) ⊂ intM .

Definition 4 Let N be an h-set. We define the h-set NT as follows

• The compact subset of the quadruple NT is the compact subset of the
quadruple N , also denoted by N ,

• u(NT ) = s(N), s(NT ) = u(N)

• The homeomorphism cNT : Rn → Rn = Ru(NT ) × Rs(NT ) is defined by

cNT (x) = j(cN (x)),

where j : Ru(N) × Rs(N) → Rs(N) × Ru(N) is given by j(p, q) = (q, p).

Notice that NT,+ = N− and NT,− = N+. This operation is useful in the
context of inverse maps, as it was first pointed out in [?].

Definition 5 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let g : Ω ⊂ Rn → Rn. Assume that g−1 : M → Rn is
well defined and continuous. We say that N

g⇐= M (N g-backcovers M) iff

MT g−1

=⇒ NT .

Following [?], let us point out that, although covering and backcovering occur
often simultaneously, they are not equivalent, for example it can happen that
the map f is not defined on N .

Theorem 8 Let Ni, i = 0, . . . , k be h-sets and Nk = N0. Assume that for each
i = 1, . . . , k we have either

Ni−1
fi=⇒ Ni, (27)

or
Ni ⊂ dom (f−1

i ) and Ni−1
fi⇐= Ni. (28)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k, (29)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (30)

4 Multiple wrapped covering relations

The goal of this section is to generalize the notion of covering relations intro-
duced in Section 3. We will change condition 2 in the definition of covering
relations in order to allow for more general maps at the end of homotopy h (this
means that we allow for different model maps).
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Definition 6 Assume that N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rn be a continuous map. Let fc = cM ◦f ◦c−1

N :
Nc → Ru × Rs. Let w be a nonzero integer. We say that

N
f,w
=⇒ M

(N f -covers M with degree w) iff the following conditions are satisfied

1. there exists a continuous homotopy h : [0, 1]×Nc → Ru × Rs, such that the
following conditions hold true

h0 = fc, (31)
h([0, 1], N−

c ) ∩Mc = ∅, (32)
h([0, 1], Nc) ∩M+

c = ∅. (33)

2. There exists a map A : Ru → Ru, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (34)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (35)

Moreover, we require that

deg(A,Bu(0, 1), 0) = w,

Note that in the case u = 0, an h-set N can cover an h-set M only with
degree w = 1.

The previous definition of covering relation (Definition 2) is a particular
case of the present one, with the degree w equal to sgn (det(A)) (for u > 0).
See Figure ?? for an example of a multiple wrapped covering relation. As in
Section 3, we will call the map h1 a model map for the relation N

f,w
=⇒ M .

Remark 9 In applications, we would like to decide whether two h-sets are cor-
rectly aligned based essentially on the information on their boundaries. Condi-
tion 1 from the above definition is stated in this spirit. In condition 2, we can ex-
press the local Brouwer degree of A as the winding number of A(∂Bu(0, 1)) about
the origin. More precisely, in the case u > 0, since the map A : Bn(0, 1) → Rn

satisfies
0 /∈ A(∂Bu(0, 1)), (36)

we can define a map sA : Su−1 → Su−1 by

sA(x) =
A(x)
‖A(x)‖ . (37)

The degree d(sA) of a mapping of a sphere is defined in Appendix 2.1. By
Lemma 5, we obtain deg(A,Bu(0, 1), 0) = d(sA). Thus, the degree of a covering

N
f,w
=⇒ M can be computed as w = d(sA).
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We define the corresponding notion of backcovering for this new type of
covering relation.

Definition 7 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let g : Ω ⊂ Rn → Rn. Assume that g−1 : |M | → Rn

is a well defined, continuous map. We say that N
g,w⇐= M (N g-backcovers M

with degree w) iff MT g−1,w
=⇒ NT .

Theorem 10 Let Ni, i = 0, . . . , k be h-sets and Nk = N0. Assume that for
each i = 1, . . . , k we have either

Ni−1
fi,wi=⇒ Ni, (38)

or
Ni ⊂ dom (f−1

i ) and Ni−1
fi,wi⇐= Ni. (39)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k, (40)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (41)

5 The topological transversality theorem

The goal of this section is to state and prove the main topological transversality
theorem for a chain of covering relations. For this end we need first to define
the notions of vertical and horizontal disks in an h-set.

Definition 8 Let N be an h-set. Let b : Bu(N)(0, 1) → |N | be continuous and
let bc = cN ◦b. We say that b is a horizontal disk in N if there exists a continuous
homotopy h : [0, 1]×Bu(N)(0, 1) → Nc, such that

h0 = bc (42)
h1(x) = (x, 0), for all x ∈ Bu(N)(0, 1) (43)

h(t, x) ∈ N−
c , for all t ∈ [0, 1] and x ∈ ∂Bu(N)(0, 1) (44)

Definition 9 Let N be an h-set. Let b : Bs(N)(0, 1) → |N | be continuous and
let bc = cN ◦ b. We say that b is a vertical disk in N if there exists a continuous
homotopy h : [0, 1]×Bs(N)(0, 1) → Nc, such that

h0 = bc

h1(x) = (0, x), for all x ∈ Bs(N)(0, 1)

h(t, x) ∈ N+
c , for all t ∈ [0, 1] and x ∈ ∂Bs(N)(0, 1).

It is easy to see that b is a horizontal disk in N iff b is a vertical disk in NT .
We would like to remark here that a horizontal disk in N can be at the same

time also vertical in N . An example of such disk is shown on Fig. 1. In case
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homotopies used in the definitions of horizontal and vertical disks are different.
The existence of such disks, which are both vertical and horizonal will play very
important role in our method for detection of an infinite number symmetric
periodic orbits for maps with reversal symmetry.

N −

N −

b([-1,1]) ⊂ Fix(S)

Figure 1: The curve b is both horizontal and vertical disk in N . In this example
u(N) = s(N) = 1.

Now we are ready to state and prove the main topological transversality
theorem. A simplified version of this theorem was given in [?] for the case of
one unstable direction and covering relations chain without backcoverings. The
argument in [?], which was quite simple and was based on the connectivity
only, cannot be carried over to a larger number of unstable directions or to the
situation when both covering and backcovering relations are present.

Theorem 11 Let k ≥ 1. Assume Ni, i = 0, . . . , k, are h-sets and for each
i = 1, . . . , k we have either

Ni−1
fi,wi=⇒ Ni (45)

or Ni ⊂ dom (f−1
i ) and

Ni−1
fi,wi⇐= Ni. (46)

Assume that b0 is a horizontal disk in N0 and be is a vertical disk in Nk.
Then there exists a point x ∈ intN0, such that

x = b0(t), for some t ∈ Bu(N0)(0, 1) (47)
fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (48)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = be(z), for some z ∈ Bs(Nk)(0, 1) (49)
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6 How to find a homotopy for the covering re-
lations

The goal of this section is to present sufficient conditions which ensure that
N

f
=⇒ M , solely based on the knowledge of f(N) and M .

Definition 10 Let N be a h-set. We set

S(N)−c = {(p, q) ∈ Ru × Rs | ‖p‖ > 1}. (50)

We define S(N)− = c−1
N (S(N)−c ).

The above theorem allows to take its assumptions as a definition of covering
relation as it was done before by Zgliczyński in [?, ?] for maps with one topo-
logically expanding direction (u = 1), and in [?] for maps which are close to
products of one dimensional maps. Below we will discuss the case of u = 1.

6.1 Case of one nominally expanding direction, u = 1

In this section we discuss the case of u = 1, hence we have only one nominally
expanding direction. The basic idea here is that each of the sets N−, S(N)−

consists of two disjoint components, allowing us to simplify the assumptions of
Theorem ??.

Definition 11 Let N be an h-set, such that u(N) = 1. We set

N le
c = {−1} ×Bs(0, 1),

Nre
c = {1} ×Bs(0, 1),

S(N)l
c = (−∞,−1)× Rs,

S(N)r
c = (1,∞)× Rs.

We define

N le = c−1
N (N le

c ), Nre = c−1
N (Nre

c ),
S(N)l = c−1

N (S(N)l), S(N)r = c−1
N (S(N)r).

We will call N le, Nre, S(N)l and S(N)r the left edge, the right edge, the left
side and right side of N , respectively.

It is easy to see that N− = N le ∪Nre and S(N)− = S(N)l ∪ S(N)r.
The triple (N, S(N)l, S(N)r) represents a t-set, as it was defined in [?].

Theorem 12 Let N , M be two h-sets in Rn, such that u(N) = u(M) = 1 and
s(N) = s(M) = s = n− 1. Let f : N → Rn be continuous.

Assume that there exists q0 ∈ Bs(0, 1), such that the following conditions
are satisfied

f(cN (Bu(0, 1)× {q0})) ⊂ int (S(M)l ∪M ∪ S(M)r), (51)
f(N) ∩M+ = ∅, (52)
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and one of the following two conditions holds true

f(N le) ⊂ S(M)l and f(Nre) ⊂ S(M)r, (53)
f(N le) ⊂ S(M)r and f(Nre) ⊂ S(M)l. (54)

Then there exists w = ±1, such that

N
f,w
=⇒ M.
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