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A Model Problem - Kuramoto-Sivashinsky
PDE

Consider the Kuramoto-Sivashinsky (KS ) eq.

ut = −νuxxxx − uxx + 2uux, ν > 0

where (t, x) ∈ [0,∞) × R subject to periodic
and odd boundary conditions

u(t,0) = u(t,2π)

u(t,−x) = −u(t, x)

For various values of ν a variety of dynamics,

fixed points,
periodic orbits,
heteroclinic orbits,
chaotic dynamics,

have been observed numerically.

Goal: A rigorous means of proving these nu-
merical results.
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A Model Problem - Kuramoto-Sivashinsky
PDE, Fourier expansion

Fourier expansion is: u(t, x) =
∑∞

k=−∞ bk(t)e
ikx

Substituting in KS and applying boundary con-
ditions gives:

ȧk = k2(1−νk2)ak−k
k−1∑

n=1

anak−n+2k
∞∑

n=1

anan+k

where bk = iak and k = 1,2,3, . . ..

Linearization: ȧk = k2(1− νk2)ak

• k-th mode is unstable for k < 1√
ν

• k-th mode is stable for k > 1√
ν

• the modes with k >> 1√
ν

should be irrele-
vant for the dynamics
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A Model Problem - Kuramoto-Sivashinsky

PDE, known results

Known results:

• the existence of global attractor, the func-

tions from attractor are analytic - Fourier

series converge at geometric rate (Foias,

Temam)

• the existence of finite dimensional inertial

manifold (Foias, Nicolaenko, Sell, Temam,

Rossa, Jolly) ( not of much use in rigorous

numerics)

No analytical results dynamics more compli-

cated than fixed points bifurcating from zero

solution
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Our rigorous results for

Kuramoto-Sivashinsky PDE

• the existence of multiple periodic orbits for

various parameter values ν ≈ 0.1215, 0.1212,

0.125, 0.032, 0.02991, both stable and un-

stable orbits

• the existence of multiple fixed points for

various values o f ν and their bifurcations

(joint with K. Mischaikow)

• the existence of attractive fixed points for

various values of ν
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Periodic point for KS-equation

µ = 0.127

Symmetric attracting orbit

Theorem: Let u0(x) =
∑10

k=1−2ak sin(kx), where

ak are given in table below. There exists a

function u∗(t, x) , the classical solution of KS

for ν = 0.127, such that

‖u0 − u∗(0, ·)‖L2
< 8.1 · 10−4,

‖u0 − u∗(0, ·)‖C0 < 6.5 · 10−4

such that u∗ is periodic with respect to t.

a1 = 2.012088e− 01 a2 = 1.289978
a3 = 2.012152e− 01 a4 = −3.778654e− 01

a5 = −4.231056e− 02 a6 = 4.316137e− 02
a7 = 6.940373e− 03 a8 = −4.156441e− 03

a9 = −7.945097e− 04 a10 = 3.315994e− 04

Proof uses Brouwer Thm. and rigorous integration of
KS-PDE

6



Periodic point for KS-equation

µ = 0.1215

non-symmetric attracting orbit past period dou-
bling

Theorem: Let u0(x) =
∑13

k=1−2ak sin(kx), where
ak are given in table below. There exists a
function u∗(t, x) , the classical solution of KS
for ν = 0.1215, such that

‖u0 − u∗(0, ·)‖L2
< 9.9 · 10−5,

‖u0 − u∗(0, ·)‖C0 < 6.2 · 10−5

such that u∗ is periodic with respect to t.

a1 = 2.559310e− 01 a2 = 1.096696
a3 = 2.559302e− 01 a4 = −3.079615e− 01

a5 = −4.780276e− 02 a6 = 3.002052e− 02
a7 = 7.352633e− 03 a8 = −2.530197e− 03

a9 = −7.561938e− 04 a10 = 1.624861e− 04
a11 = 6.833008e− 05 a12 = −8.789182e− 06

a13 = −5.429523e− 06

Proof uses Brouwer Thm. and rigorous inte-
gration of KS-PDE
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Periodic point for KS-equation

µ = 0.1215

Symmetric unstable orbit, past period doubling

Theorem: Let u0(x) =
∑11

k=1−2ak sin(kx), where

ak are given in table below. There exists a

function u∗(t, x) , the classical solution of KS

for ν = 0.1215, such that

‖u0 − u∗(0, ·)‖L2
< 1.27 · 10−3,

‖u0 − u∗(0, ·)‖C0 < 8.26 · 10−4

such that u∗ is periodic with respect to t.

a1 = 2.450027e− 01 a2 = 1.041500e + 00
a3 = 2.449985e− 01 a4 = −2.760754e− 01

a5 = −4.371320e− 02 a6 = 2.531380e− 02
a7 = 6.345919e− 03 a8 = −1.996779e− 03

a9 = −6.177148e− 04 a10 = 1.184863e− 04
a11 = 5.269771e− 05

Proof uses Miranda Thm. and rigorous inte-

gration of KS-PDE, the orbit is apparently un-

stable
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Periodic point for KS-equation

µ = 0.032

symmetric attracting orbit, close to chaotic re-
gion

Theorem: Let u0(x) =
∑23

k=1−2ak sin(kx), where
ak are given in table below. There exists a
function u∗(t, x) , the classical solution of KS
for ν = 0.032, such that

‖u0 − u∗(0, ·)‖L2
< 8.9 · 10−4,

‖u0 − u∗(0, ·)‖C0 < 9.5 · 10−4

such that u∗ is periodic with respect to t.

a1 = 3.506682e− 01 a2 = 2.522889e− 02
a3 = 3.506665e− 01 a4 = −2.276745e + 00

a5 = −1.115325e + 00 a6 = −3.693057e− 01
a7 = 4.603873e− 01 a8 = −4.604564e− 01

a9 = −3.115024e− 01 a10 = −1.449674e− 01
a11 = 5.104894e− 02 a12 = −2.165916e− 02

a13 = −3.413293e− 02 a14 = −2.613508e− 02
a15 = 1.307623e− 03 a16 = 8.752424e− 05

a17 = −2.115586e− 03 a18 = −2.891477e− 03
a19 = −5.007345e− 04 a20 = 3.374289e− 05
a21 = −4.423567e− 05 a22 = −2.280484e− 04
a23 = −9.029570e− 05
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The main idea

Our equation

ut = Lu + N(u, Du, . . . , Dru), (1)

u ∈ Rn, x ∈ Td, ( Td = (R/2π)d is an d-
dimensional torus), L is a linear operator, N

- a polynomial and by Dsu we denote s-th or-
der derivative of u,

L is diagonal in the Fourier basis {ekx}k∈Zd

Leikx = λkeikx, (2)

and the eigenvalues λk satisfy

λk = −v(|k|)|k|p (3)

0 < v0 ≤ v(|k|) ≤ v1, for |k| > K−(4)

p > r. (5)

The fact that we are considering functions on
the torus means that we impose periodic bound-
ary conditions. We may eventually seek odd
or even solutions or impose some other condi-
tions.
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Replace (1) by an infinite ladder of ODEs for
Fourier coefficients of u(t, x) =

∑
k uk(t)e

ikx:

duk

dt
= λkuk + Nk(u), for all k ∈ Zd. (6)

Split the phase space for (6) into two parts:
the finite dimensional part, X, containing the
Fourier modes most relevant for the dynamics
of (1) and the tail T ⊂ X⊥. Now (6) is re-
placed by two problems (7) and (8). The first
part consist of a finite dimensional differential
inclusion for p ∈ X, given by

dp

dt
∈ P (Lp + N(p + T )), p ∈ X (7)

where P is a projection onto X.

The second part: the evolution of T , which
is governed by an infinite set of inequalities of
the form

λkuk,j + N−
k,j <

duk,j

dt
< λkuk,j + N+

k,j, (8)

j = 1, . . . , n and for k not in X

where N±
k,j are suitably chosen constants.
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Obviously, to infer from (7) and (8) any infor-

mation on the behavior of solutions of the full

system (6) one needs some consistency condi-

tions. A systematic treatment of this issue is

at the heart of our method of self-consistent

bounds

Important: Integrating (7) and (8) we obtain

uniform bounds for all Galerkin projections of

(6). We apply to Galerkin projections topolog-

ical tools, to obtain periodic orbits (hopefully

also the symbolic dynamics) and then we pass

to the limit to get those for full PDE.
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The method of self-consistent bounds

H - Hilbert space,

e1, e2, . . . - an orthogonal basis in H

The corresponding projections are

pm = Pma := (a1, a2, . . . , am)

qm = Qma := (am+1, am+2, . . .)

The problem:

ȧ = F (a) (9)

F is not continuous, with dense domain in H.

Fk ◦ Pn is a C1-function for n, k ∈ N

Later F (a) = L(a) + N(a), L - linear, N- non-

linear

e1, e2, . . . - eigenvectors of L - very helpful
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The method:

Def. Fix m, M ( m ≤ M). A compact set
W ⊂ Pm(H) and a sequence of pairs {a±k ∈ R |
a−k < a+

k , k ∈ Z+} are self-consistent a-priori
bounds for F if:

C1 For k > M , a−k < 0 < a+
k .

C2 Let âk := max |a±k | and set û =
∑∞

k=0 âkek.
Then, û ∈ H, ({âk} ∈ l2)

C3 The function u 7→ F (u) is continuous on

W ⊕
∞∏

k=m+1

[a−k , a+
k ] ⊂ H.

Moreover, if we define
f̂k = max

u∈W⊕∏∞
k=m+1[a

−
k ,a+

k ]
|Fk(u)| and set

f̂ =
∑

f̂kek, then f̂ ∈ H. ({f̂k} ∈ l2)

Notation: T =
∏∞

k=m+1[a
−
k , a+

k ] - Tail

14



ISOLATION for n > m

For a ∈ W ⊕ T and k > m holds

ak = a+
k ⇒ ȧk < 0

ak = a−k ⇒ ȧk > 0

——————————————————-

C1,C2,C3 - give convergence

C4 - gives a priori bounds

C1,C2,C3,C4 - easy to satisfy (later)

15



Finite dimensional rigorous computations in m

first variables

Basic Differential Inclusion:

ṗ ∈ PmF (p) + Γm, p ∈ Rm, (10)

where Γm = {PmF (p + q)− PmF (p) | q ∈ T}

We say a multivalued map pI : [0, h] → H is

upper attainable set (uas) map for (10) if the

following is true

• any C1 function satisfying (10) and defined

on the maximum interval of existence is

defined on [0, h]

• if a C1-function p : [0, h] → Xm satisfies

(10), then p(t) ∈ pI(t) for t ∈ [0, h]
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Theorem: Assume W ⊕ T are self-consistent

bounds for F . If pI : [0, t1] → Xm = Pm(H) is

uas map for (10), such that pI([0, t1]) ⊂ W .

Then for any q0 ∈ T , the problem u′ = F (u)

(and all its Galerkin projections u′ = PnF (u),

n > M) has a solution u(t) = (p(t), q(t)) for

t ∈ [0, t1], such that

p(t) ∈ pI(t), q(t) ∈ T, for t ∈ [0, t1]
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Why it is a easy to find a good tail =

self-consistent bounds

ut = Lu + N(u, Du, . . . , Dru)

x ∈ Tn (periodic boundary conditions),

L - linear, diagonal, N - polynomial

Fourier expansion u(t) =
∑

k∈Zn ak(t)e
ik·x

Lemma. Let s > s0. If |ak| ≤ C/|ks|, |a0| ≤ C,

then there exists D = D(C, s)

|Nk| ≤
D

|k|s−r
, |N0| ≤ D

Isolation. Assume L(a)k = −|k|pak, p > r.
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Assume |ak| ≤ C
|ks|, |ak0

| = C
|k0|s, then

d|ak0
|

dt
≤ −|k0|p|ak0

|+ |Nk0
(a)| ≤

−C|k0|p−s + D|k0|r−s

d|ak0
|

dt
< 0, |k0| > M



Rigorous integration for dissipative

PDEs

(x, y) ∈ Xm ⊕ Ym ⊂ H - Hilbert space,
dimXm = m < ∞, dimYm ≤ ∞
Pm : H → H, projection onto Xm, Qm = I−Pm

F - our PDE in some basis on H

x′ = PF (x, y) (11)

y′ = QF (x, y) (12)

Idea: Replace (11 - 12) by

x′(t) ∈ PmF (x(t), Tail(t)) (13)

y(t) ∈ Tail(t), (14)

where Tail(t) has finite representation and can
be computed in finite number of operations.
Tailk(t) should decay fast enough.

We want also that: x(t) ⊕ PnQmTail(t), for
n > M , is a rigorous estimate to n-dimensional
Galerkin projection of F , for the initial condi-
tion x(0)⊕ PnQmTail(0)
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Integration of dissipative PDEs - II

x′(t) ∈ PmF (x(t), Tail(t)) (15)

y(t) ∈ Tail(t), (16)

x′ = PmF (x) - Galerkin projection, induces ϕm

One time step:

initial condition Z ⊕ Tail(0) ⊂ Xm ⊕ Ym, h > 0

1 • find W ⊕ T [0, h] (rough enclosure)

PmF (x, y)− PmF (x,0) ⊂ Γ, x ∈ Z

ϕm,Γ([0, h], Z) ⊂ W

Tail([0, h]) ⊂ T [0, h].

2 • instead of (15) consider x′ ∈ PmF (x,0)+Γ

- use algorithm for differential inclusions, to

obtain x(h) for (x, y) ∈ Z ⊕ Tail(0).

3 • compute Tail(h).
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Representation used for KS equation

We look for solutions in

W ⊕T = W ⊕Πk≤M
k=m+1[a

−
k , a+

k ]⊕Πk>M

[−C

ks
,
C

ks

]

(17)

where W ⊂ Xm.

Nk(W ⊕ T ) ⊂ [N−
k , N+

k ], k = m + 1, . . . , M

Nk(W ⊕ T ) ⊂
[−D(W ⊕ T )

ks−2
,
D(W ⊕ T )

ks−2

]
, k > M

We solve (estimate rigorously) the solutions of

the following system of differential inclusions

x′ ∈ PmF (x) + Γ, x ∈ W ⊂ Xm

x′k ∈ λkxk + [N−
k , N+

k ], k = m + 1, . . . ,

xk for k > M are given by a single formula.
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Rigorous integration for ODEs and

differential inclusions - basic principles

x ∈ Rn, f : Rn → Rn - C1.,

x′ = f(x), x(0) = x0 (ODE)

induces ϕ(t, x0) ∈ Rn

One time step:

initial condition: X0 ⊂ Rn, h > 0 is a time step

1• find W ⊂ Rn (rough enclosure), such that

ϕ([0, h], X0) ⊂ W

2• apply the Taylor method to (ODE), evalu-

ate the error term on W to obtain X1 ⊂ Rn,

such that

ϕ(h, X0) ⊂ X1
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Rigorous integration for ODEs -

comments

• all computations are performed in interval

arithmetic

• one should be very careful in the way how

step 2 is executed, straightforward interval

evaluation leads to the wrapping effect.

• we use the Lohner algorithm
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Rigorous integration of differential

inclusion

Differential inclusion : Γ ⊂ Rn

x′ ∈ f(x) + Γ, x(0) = x0

induces ϕΓ(t, x0) ⊂ Rn

One time step:
initial condition: X0 ⊂ Rn, h > 0 is a time step
1• compute X1, such that ϕ(h, X0) ⊂ X1

2• find W2 ⊂ Rn (rough enclosure), such that

ϕΓ([0, h], X0) ⊂ W2, x ∈ X0

3• use Gronwall type lemma to find ∆ ⊂ Rn,

ϕΓ(h, x)− ϕ(h, x) ∈ ∆

This step requires ∂f
∂x(W2)

4•
ϕΓ(h, X0) ⊂ X1 + ∆
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Differential inclusions - Fundamental

Lemma

For a fixed yc ∈ Rn2 we compare the solutions

of two ODEs

x′1 = f(x1, yc),

x′2 = f(x2, yc) + (f(x2, y(t))− f(x2, yc))

x1(t0) = x2(t0) = x0

where y(t) is given (but unknown) function.
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Lemma: Let:

[Wy] ⊂ Rn2, convex, y([t0, t0 + h]) ⊂ [Wy].

[W1] ⊂ [W2] ⊂ Rn1 - convex and compact.

x1([t0, t0+h]) ⊂ [W1], x2([t0, t0+h]) ⊂ [W2] for

any continuous function y : [t0, t0 + h] → [Wy].

Then the following inequality holds for t ∈ [t0, t0+

h] and for i = 1, . . . , n1

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0
eJ(t−s)C ds

)

i

, (18)

where

[δ] = {f(x, yc)− f(x, y) | x ∈ [W1], y ∈ [Wy]},
Ci ≥ sup |[δi]| , i = 1, . . . , n1

Jij ≥ sup
∂fi

∂xj
([W2], [Wy])if i = j,

Jij ≥ sup

∣∣∣∣∣
∂fi

∂xj
([W2], [Wy])

∣∣∣∣∣ if i 6= j.

26



Tail evolution

Our problem a′k = λkak + Nk(a),
λk → −∞, for |k| → ∞

W , T ([0, h]) - the rough enclosure for Z⊕T (0)
for t ∈ [0, h]

For k > m we have

N±
k = N±

k (W, T ([0, h]))

λkak + N−
k <

dak

dt
< λkak + N+

k ,

hence

b±k =
N±

k

−λk
, (19)

T (h)±k =
(
T (0)±k − b±k

)
eλkh + b±k (20)

It remains to put T (h) for k > M in the form

T (h)±k =
±C(T (h))

ks(T (h))
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For k > M we have

0 < b+k ≤ C(b)

ks(b)

T (0)+k =
C(T (0)

ks(T (0))

T (h)+k ≤ T (0)±k eλkh + b±k .

T (h)+k ≤ C(T (0))

ks(T (0))
eλkh +

C(b)

ks(b)
.

Let

E = ehλM+1(M + 1)s(b)−s(T (0)).

then (modulo some conditions on M , h)

eλkh ≤ E

ks(b)−s(T (0))
, k > M

and finally we can set

T±k (h) = ±C(T (0))E + C(b)

ks(b)
.
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About the computations

• gnu C++

• interval arithmetic - from CAPD package

devoloped in Krakow, Poland

• we use the Lohner algorithm to integrate

differential inclusions
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Some computation data

On 3GHz machine, Linux, gnu C++

• ν = 0.127, m = 10, M = 3 ∗m, h = 1e− 3,

order = 4, T/2 ≈ 1.12, computation time

around 10 sec

• ν = 0.1215, m = 13, M = 3∗m, h = 4e−4,

order = 6, T ≈ 3.07, computation time

around 240 sec

• ν = 0.032, m = 23, M = 3∗m, h = 1.5e−4,

order = 5, T/2 ≈ 0.41, computation time

around 300 sec
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Conclusions

• rigorous numerics for dissipative PDEs is

possible

• global existence and uniqueness theorems

are not required, interesting solutions are

constructed

• could be applied to (I hope): Ginzburg-

Landau, Navier-Stokes in 2D and 3D
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Future work

• prove chaos (symbolic dynamics) for KS ν ≈
0.029 or ν ≈ 0.1212

• Construct an rigorous C1-algorithm for dis-

sipative PDE.

This will make possible to rigorously apply a

lot of dynamical system theory to dissipative

PDEs.
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