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Interval arithmetics
a cure for round-off errors

Arithmetics on closed intervals. For example:
o [1,3] (+)[3,17] = [4,20]

e 1(/)3=[0.33333,0.33334]

diam[a_,aT] =aT—a~, m(la_,a™]) = (a+—|—a_)/2

Rigorous interval arithmetics can be realized
on the computer i.e. for each arithmetic op-
erator & € {+,—,-,/} the following is true

[CL_, a'_l_] <> [b—a b—|—] C [Cl,_, CL+] <<>> [b—7 b—|—]

For any elementary function f: R" — R® and
any set Z Cc R"

f(Z) c () ((Z))



Interval arithmetics - problems

e Wrapping

the result of evaluation of multidimensional map
IS product of intervals, disastrous results when
considering f™ for n-large, ODEs

e dependency:
for x = [—1,1] holds

x(—)x=[-2,2]

Another example:

. oo _1nxn
N

n=0

n!

[1 — sinh(¢), cosh(t)] C (e~ 1Ot

diam(<e_[0’t]>) > el—1, diam(e_[o’t]) =1—c¢"!
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Interval arithmetics - fighting the
dependency problem

Let [X] ¢ R™ - convex, zg € [X], f: R® — Rk
Cl-function, then

FUXD C f(zo) + [dfF ([XD] - ([X] —z0) (1)
where [df ([X])]; is the interval enclosure of

df ([X1])
[df (2)]; = {M € RP*™,

ing 27 (2),sup Ofi (z)”

z2€L 8.7;] 2€Z 0%

M;; €

Mean value form: Let zg = m([Xg]), then we
set

() (XD = (f) (o) + (ldf ([XD]r - ([X] = z0))



Interval arithmetics - fighting the
dependency problem, Examples

e evaluation of f(x) = x — z, will give zero

e evaluation of f(z) = 22 — 22 on [-1,1]

< f([-1,1]) >=0+4+ (2 — 2x)[-1,1] = [-4,4]

rather bad result

e evaluation of f(x) = e 7

<0 5= t/2 4 (10 [_%, %] —
e 24 4/2. 710 1 1] =
e t/2 4 tcosh(t)/2-[-1,1]

Hence

t3 o
diam(< e~ 10:t] >) :tcoshtzt—l—;—l—ﬁ—l—...,

for small ¢t we have improvement, for ¢t large it
IS worse.



Some methods for the reduction of
the error growth

e set division: Let Sy = ¢(t,5). When S; be-

comes too large, one should divide it into smaller
pieces and compute further the evolution of

each each piece separately

e [ Ohner algorithm: in order to avoid wrap-
ping effect one should choose good coordinate
frame in each step

e Taylor models (Berz, Makino):



Interval arithmetics - fighting the
dependency problem, Taylor
models(Berz, Makino)

All sets represented as image of polynomial
maps plus small remainder term (Taylor mod-
els) - similar to symbolic computations

application of map to such that such - recom-
putation of the coefficient in the Taylor model

very general, flexible, virtually no dependency
and wrapping problems

very slow and hard to program



One step of the Lohner algorithm

' = f(x) induces p(t,zg) - t-time, xg - initial
condition,

d(h,x) - numerical method, Taylor method of
order p

Input:

e t,. - time,hy - time step

e [z] C R", such that o(tg, [zg]) C [zg]

Output:

® 1 =1+ hg

e [z141] C R, suchthat o(tr41,[z0]) C [7p41]
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1. Rough enclosure of ([0, ht], [z])

[W1] € R™ compact and convex

([0, hgl, [z4]) C [W]
2. [Ag] = G2 (hy, [z1])
3. [zg41] ( m([zg]) - midpoint of [z;] )

[zx+1] = P(hg, m([zg])) +
[Ag]([z] — m([zg])) + Rem([W1q])



Taylor method - for rigorous
integration of ODEs

' = f(x), (0) = xg give rise to (¢, xg)
[X], [Y] - interval sets - products of intervals

If [Y] = [X] + [0, h]f([2]) Cint[Z],
then ([0, R], [X]) C [Y].

Taylor expansion for o(h,z) for z € R", with
respect to h (below n = 1), can be gener-
ated from ODE (automatic differentiation al-
gorithm)

0

5,2(0,20) = {1 (o) = f (o)
02 ,
529(020) = 2 (20) = f'(x0)z'

83 / /
53°(020) = 2P (20) = £ (o) (+)? + /(202
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Error term (r - the order of the Taylor method)

ar—l—l ar—l—l

1P (0h,20) = = 10(0,p(8h, 20)) € " F([YY).

r o hk
e (h, [Xol) € [Xol + 3 «M([Xol) 7 +
k=1 '
pr+1

(r+ 1)

2 TH(YD)
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Reduction of the wrapping effect

(2] = i+ [rl, r = m([zg]), [rr] = [z] —2

The equation to evaluate:

[ri4-1] = [Agllre] + [zr41]

Eventual reduction of the wrapping effect de-
pends on how we will represent [rg]

e interval set [rg] = MNI;, I; -interval

e parallelepiped [ri] = Bi[rr], B - matrix, 7
-interval set

e cuboid [rg] = Qgl7Tx], 71 -interval set, Qj or-
thogonal matrix

e doubleton [r] = Cilrol + [Fx], Cr matrix, [7i]
IS either cuboid, parallelepiped or interval set
12



using interval sets == wrapping effect

other approaches try to minimize wrapping through
choosing good coordinate frame

We choose different coordinate frame: [ry] =
By |7l

[rie4-1] = [Agllre] + [z41] =
Br41 (B];il[Ak]Bk[?k] + Bk__|1_1[zk—|—1])

[ro] = [Bollrol, [Bol = {Id}
[Frt1] = ([Brpal[Al[BR]) [F] + [Bifql[2041]
["k+1] = [Br4-1][7r41]
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Usually Biyq is a Q-factor from QR decom-
position of U € [Ag][By], but first we permute
columns of U, so that their norms are decreas-

ing

Even better:

[rk41] = Crg1lrol + [Tr41]
[Fra1] = [AgllFe] + [2k41] + ([AR]ICk — Cr1)[rol,
[Fo] = 0
and Cp = Id, Ck—l—l c [Ak]ck

[7,.] is evaluated using previous method
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When Lohner algorithm can fail?

Only the first step - the generation of the
rough enclosure - is heuristic. It can happen
that a solution does not exists on [0, hy].
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Easy first order rough enclosure

v =f(z), zeR", feC? (2)
o(t,xz) the flow induced by (2)

Theorem: Let h > 0. Let X, Z be interval
sets, X C intZ. Suppose that

Y :=interval hull(X 4+ [0,h]f(Z)) C intZ (3)
then
p([0,h],X) CY (4)

Problem: For ' = —Lx we have a bound for
the time step

1
h < —
L
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Insert here an example for n = 2 with

one dissipative coordinate
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Improved rough enclosure for

dissipative ODE

Theorem: h >0, X C Z C R"™ - interval sets.
Let D C {1,...,n} ( dissipative(damped) di-
rections), if k € D, then

)‘k < 0
Akxk_I_Nk_ < $k<>‘k:33k+N]j_

where N,(Z) € (N, , N;").

For k€ D we set

+
b:l: _ Nk
E = Tk
_)\k

g = (X,f—b,f) MM 4 pE.
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Let Y =T"_,Y; be such that

Y, = Z ieD.

Then
©([0,h],X) CY,

provided the following conditions are satisfied
fore=1,...,n

1. ifi ¢ D, then
Y;j C thZ

2. upper bounds for 1 € D
: + + + +
if Z" <b", then Z' >g)/

3. lower bounds for 1 € D

if Zz-_>bi_, then Zz._ggk_

19



For
' =—Lx, L>0

and X = [—1,1] one obtains Y = [-1,1] and
no bound on A > 0.
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Computation of the Poincaré map

e One needs a procedure which gives a rigorous
estimates between time steps for x-variable for
ODE - rough enclosure ok

e We need to come very close to section

ethe section error is minimized for sections per-
pendicular to the flow
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Lohner algorithm

[zx] = =z, + [rr], where [r;] = Qgl7k] or [rx] =
Crlrol + Qil7x]

1. Finding rough enclosure [W] of ([0, hg], [x])
2. [Ax] = %2 (h, [z1])

3. o1 = m(P(hg, zr)),
[2p4-1] = Rem([W]) + ®(hy, z) — Tg41

4. [rp4+1] = [Ag] - [rg+1]+[2x4-1] - the rearange-
ment computations

Step 2 - the most time consuming part (we
practically solve variational equation)
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Cost(Step2) ~ n?Cost(Step3)
Cost(Step3) >> Cost(Stepl 4+ Step4)

Very slow compared to nonrigorous computa-
tions by factor of order 10n.

Reasons:

the interval arithmetics is at least two times
slower than nonrigorous one

The Lohner algorithm is a Oo—algorithm, but
internally is in fact C1

Question: Can one do better with C°© algo-
rithm?
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CO- algorithm

] = 2. + B(0,7), where r € R, B(0,r) - the
ball of radius r. The choice of the good norm
IS an important parameter of algorithm.

1. Find rough enclosures ¢([0, hy], [zr]) C [W]
of and «([O, ht], zy) C [W1]

2. compute [ = I(df([W]))

3. o1 = m(P(hg, zg) + Rem([W1l)), zp41 =
O (hy, xp) + Rem([W1]) — 241

4. ry1 = rpet™ 4+ ||z

Question: what is I(df([W]))~?
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Propagation of errors according to the
typical numerical analysis textbook:

' = f(x) (6)
f(z) — f(y)] < Lz —y|.

Let o(t,zg) be a solution of (6) with an initial
condition x(0) = xg. Then

o(t, ) — p(t, )| < ez -y, t>0

This is very bad estimate
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Examples:
e/ = —10x , predicts error-growth: el0t

e for the Lorenz attractor (from the proof by
Galias and P. Z.), gives an estimate for Lips-
chitz constant for the Poincare map L > 109,
while from simulations it is clear that L~ 5—6

ein the proof for Rossler system ( P.Z. ), gives
an estimate for the Lipschitz constant of Poincare
map L > 5-10%!, while from simulations L ~

2 —3 cosmic computation time
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Logarithmic norms

Logarithmic norm: Q € R"*"™

I+ hQl 1
>0,h—0 h

pn(Q) = ,

e for Euclidean norm

1(Q) = the largest eigenvalue of  1/2(Q+Q").

e for max norm ||z|| = maxy |z
n(Q) = max(qrr + D lagil)
& )

o for norm ||z|| = > 1 |z

p(Q) = mz.ax(%’i + > lagil)
ki
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Logarithmic norms - Fundamental
lemma

Lemma: Let ¢(t,x) be a flow induced by
= f(x).

Assume that Z is a convex set,
y([0,T1),¢([0,T],z0) € Z
8]
0 (—f(n)) <l, fornmeZ

H (1) - f(y(t))H <.
Then for 0 <t <T we have

It
et —1 ,
lo(t, z0)—y () || < e]|y(0)—zol||+5 —, if1#0.

For [ = O we have

| (t, z0) —y(t)|| < p+ dt.

In particular: e is a Lipschitz constant for
o(t,-) in Z (if Z is forward invariant).
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Examples:

ez’ = —10x , predicts error-growth: e~ 10t very

good

e in the proof for Rossler system ( P.Z. ) log-
aritmic norm based on the euclidian norm was
used, the estimate for the Lipschitz constant
of Poincare map in some region was L > 2.10%,
while from simulations L =~ 2 — 3 this is doable.
Using Lohner algorithm with cuboids one get
Lipschitz constant around 60 and using dou-
bletons something like 6 — 10.

29



Lohner-type algorithm for differential

inclusion

2'(t) € flz(t)) + [d] (7)

x € R"™, [6] C R"
Find a rigorous enclosure for x(t).

We compare the solutions of two ODEs

f(z1), (8)
f(z2) +y(t) (9)
z1(to) = z2(to) = xo (10)
where y(t) € [§] is given (but unknown) func-
tion.

/
L1

75
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Lohner-type algorithm for differential

inclusion - Fundamental Lemma

Lemma: Let:
[W1] C [W5] C R™ - convex and compact.

r1([to,to+h]) C [W1], z2([to,to+h]) C [W>] for
any continuous function y : [tg,to + h] — [4].

Then the following inequality holds for ¢t € [tg, o+
h] and fori=1,...,n1

o) 2,01 < [ I0as) - an

to i
where
C; > supllg]l, i=1,...,nq
a .
Jij > sup fz([Wz])ifi=j,
of; . .
Jij 2 SUD‘ fz([Wz]) if i 7% J.

(933]'
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Lohner-type algorithm for differential

Inclusion - one step

©o(t, g, [6]) - a solution of 2’ € f(z)+[6], x(0) =

o -
»(t,zg) - a solution of 2’ = f(z), =(0) = zq.

Input data:
tr, hy - a time step,
[z;;] C R"™, such that o(ty, [zo], [0]) C [z4].

Output data:

te+1 = tg + I,
[zr,41] C R™, such that ¢(t;41, [%o], [6]) C [zr41].
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Lohner-type algorithm for differential
inclusion - one step - details
1. Generation of a priori bounds for .

Find a convex and compact set [W»] C R",
such that

e ([0, hg], [zl [6]) C [Wa]. (12)

2. Computation of . We use Lohner algo-
rithm to obtain [zp41] C R™ and a convex and
compact set [W7] C R", such that

o(hy, [zk]) C [Tr4al
@([0, hgl, [zx]) < [Wil]
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Lohner-type algorithm for differential
inclusion - one step - details
continued
3. Computation of perturbation. Using Fun-

damental Lemma we find a set [A] C R", such
that

©(tp4-1, [zol, [0]) C @(hg, [zx]) + [A]. (13)

Hence

©(tp41, [zol, lyol) C [zr41] = [Tr41] + [A]
(14)
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Lohner-type .. - details and comments
Part 3 - details
1. We set

C; = right(|[&])), :=1,...,n1

Jij = right (gfi([WQ])> if i =7,

Ly

Jis right (‘gfi ([WQ])|> Jif i £ .

Lj
2.D = f(i)l el (h=3) ' ds
3. [Az] = [_DiaDi]v fori=1,...,nq
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Lohner-type .. - Computation of
fé A=) ds.

A=) ge — g [ 5o _(AD" )
/O Cd _t<n§o(”+1>!> c. (15)

We fix any norm || - ||, preferably the L°°-norm,
(lzlloo = max; |z;]).

 (n4+ 1)V

2 (n+1)! 2 An

A
Ag = 1Id, A 1= Ap-
0 n—+1 n n 4 2

A — At, An

- k -
Remainder: || Ayl < ||AN||.HN¢2H | IfHNiﬁH <

1, then
~ o~ —1
A A
< ||[An|l - |1 -
N + N+ 2

S Ay
36
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Lohner-type .. - Representation of

sets and rearrangement.
LLohner’'s approach.

In part 3:

[z41] = [Tr4-1] + [A] (16)

Evaluations 2 and 3. In this representation

[x] = = + [Bi] 7] (17)

In the context of our algorithm in part 3 we
obtain

[Zp+1] = Ti41 + [Br+1][Tr+1]- (18)
We set

Tht1 M(Tp41 + [A])
[Te+1] = [Fr41] + [Bk__h] (Tk+1 + [A] - ﬂ%+1> :
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Lohner-type .. - Representation of

sets and rearrangement II

Evaluation 4. In this representation

[xx] = xp + Cilrol + [Brll7k]- (19)

In the context of our algorithm in part 3 we
obtain

[Zg+1] = Tpg-1+Crq-1lrol +[Br4+11[Tr41]. (20)

Equation (16) is taken into account exactly in
the same way as in previous evaluations, i.e.
we use equations (19) and (19).
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Variational equations,
C"-computations

Let
Srl(ta0) = Viy(®),
8ij§;k(t,$o) = H;;r(1).
It is well known that
= f(z), (21)
GO = X @V (22)
%Hz'jk(t) —— 882(,‘? () Ve ($) Vs () +
z afs<w>H33k<x> (23)

with the initial condltlons
r(0) = xg9, V(0) = Id,
H’L]k’(o):O7 i)jﬂk:]‘)"')n
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An algorithm for C"™-computations

Simple approach: Apply CO-Lohner algorithm
to the system of variational equations, this
works rather badly

e the control of wrapping effect may for x vari-
ables may not work

e computationally ineffective because it totally
ignores the structure of the system,

Let ©(h,z) be a Taylor expansion for ¢(h,x)
of order p, then V(h,z) = $2(h,z) + hPT1

Observe that %—i’(h, [W1]) is already computed
in step 2 of CO algorithm
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An effective C'"™-algorithm

etakes into account the structure of the system
variational equations

e the rearrangement is done separately which
partial derivatives of given order

e implemented in CAPD library, we did some

computer assisted proofs involving C® compu-
tations for ODE n = 2,3
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