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Interval arithmetics
a cure for round-off errors

Arithmetics on closed intervals. For example:

• [1,3] 〈+〉 [3,17] = [4,20]

• 1 〈/〉 3 = [0.33333,0.33334]

diam[a−, a+] = a+−a−, m([a−, a+]) = (a++a−)/2

Rigorous interval arithmetics can be realized
on the computer i.e. for each arithmetic op-
erator ♦ ∈ {+,−, ·, /} the following is true

[a−, a+]♦ [b−, b+] ⊂ [a−, a+] 〈♦〉 [b−, b+]

For any elementary function f : Rn → Rs and
any set Z ⊂ Rn

f(Z) ⊂ 〈f〉 ( 〈Z〉 )
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Interval arithmetics - problems

•wrapping

the result of evaluation of multidimensional map

is product of intervals, disastrous results when

considering fn for n-large, ODEs

• dependency:

for x = [−1,1] holds

x 〈−〉 x = [−2,2]

Another example:

e−x =
∞∑

n=0

(−1)nxn

n!

[1− sinh(t), cosh(t)] ⊂ 〈e−[0,t]〉

diam(〈e−[0,t]〉) ≥ et−1, diam(e−[0,t]) = 1−e−t
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Interval arithmetics - fighting the
dependency problem

Let [X] ⊂ Rn - convex, x0 ∈ [X], f : Rn → Rk

C1-function, then

f([X]) ⊂ f(x0) + [df([X])]I · ([X]− x0) (1)

where [df([X])]I is the interval enclosure of

df([X])

[df(Z)]I =
{
M ∈ Rk×n,

Mij ∈
[
inf
z∈Z

∂fi

∂xj
(z), sup

z∈Z

∂fi

∂xj
(z)

]}

Mean value form: Let x0 = m([X0]), then we

set

〈f〉 ([X]) = 〈f〉 (x0) + 〈[df([X])]I · ([X]− x0)〉

4



Interval arithmetics - fighting the
dependency problem, Examples

• evaluation of f(x) = x− x, will give zero

• evaluation of f(x) = x2 − x2 on [−1,1]

< f([−1,1]) >= 0 + (2x− 2x)[−1,1] = [−4,4]

rather bad result

• evaluation of f(x) = e−x

< e−[0,t] >= e−t/2 +
(
−e−[0,t]

)
· [− t

2
,
t

2
] =

e−t/2 + t/2 · e−[0,t] · [−1,1] =

e−t/2 + t cosh(t)/2 · [−1,1]

Hence

diam(< e−[0,t] >) = t cosh t = t +
t3

2!
+

t5

4!
+ . . . ,

for small t we have improvement, for t large it

is worse.
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Some methods for the reduction of
the error growth

• set division: Let St = ϕ(t, S). When St be-

comes too large, one should divide it into smaller

pieces and compute further the evolution of

each each piece separately

• Lohner algorithm: in order to avoid wrap-

ping effect one should choose good coordinate

frame in each step

•Taylor models (Berz, Makino):
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Interval arithmetics - fighting the
dependency problem, Taylor

models(Berz, Makino)

All sets represented as image of polynomial

maps plus small remainder term (Taylor mod-

els) - similar to symbolic computations

application of map to such that such - recom-

putation of the coefficient in the Taylor model

very general, flexible, virtually no dependency

and wrapping problems

very slow and hard to program
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One step of the Lohner algorithm

x′ = f(x) induces ϕ(t, x0) - t-time, x0 - initial
condition,

Φ(h, x) - numerical method, Taylor method of
order p

Input:

• tk - time,hk - time step

• [xk] ⊂ Rn, such that ϕ(tk, [x0]) ⊂ [xk]

Output:

• tk+1 = tk + hk

• [xk+1] ⊂ Rn, such that ϕ(tk+1, [x0]) ⊂ [xk+1]
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1. Rough enclosure of ϕ([0, hk], [xk])

[W1] ⊂ Rn compact and convex

ϕ([0, hk], [xk]) ⊂ [W1]

2. [Ak] = ∂Φ
∂x (hk, [xk])

3. [xk+1] ( m([xk]) - midpoint of [xk] )

[xk+1] = Φ(hk, m([xk])) +

[Ak]([xk]−m([xk])) + Rem([W1])
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Taylor method - for rigorous
integration of ODEs

x′ = f(x), x(0) = x0 give rise to ϕ(t, x0)

[X], [Y ] - interval sets - products of intervals

If [Y ] = [X] + [0, h]f([Z]) ⊂ int[Z],

then ϕ([0, h], [X]) ⊂ [Y ].

Taylor expansion for ϕ(h, x) for x ∈ Rn, with

respect to h (below n = 1), can be gener-

ated from ODE (automatic differentiation al-

gorithm)

∂

∂t
ϕ(0, x0) = x(1)(x0) = f(x0)

∂2

∂t2
ϕ(0, x0) = x(2)(x0) = f ′(x0)x

(1)

∂3

∂t3
ϕ(0, x0) = x(3)(x0) = f(2)(x0)(x

′)2 + f ′(x0)x
(2)

. . .
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Error term (r - the order of the Taylor method)

∂r+1

∂tr+1
ϕ(θh, x0) =

∂r+1

∂tr+1
ϕ(0, ϕ(θh, x0)) ⊂ xr+1([Y ]).

ϕ(h, [X0]) ⊂ [X0] +
r∑

k=1

x(k)([X0])
hk

k!
+

xr+1([Y ])
hr+1

(r + 1)!
.
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Reduction of the wrapping effect

[xk] = xk+[rk], xk = m([xk]), [rk] = [xk]−xk

The equation to evaluate:

[rk+1] = [Ak][rk] + [zk+1]

Eventual reduction of the wrapping effect de-

pends on how we will represent [rk]

• interval set [rk] = ΠIj, Ij -interval

• parallelepiped [rk] = Bk[r̃k], Bk - matrix, r̃k

-interval set

• cuboid [rk] = Qk[r̃k], r̃k -interval set, Qk or-

thogonal matrix

• doubleton [rk] = Ck[r0]+ [r̃k], Ck matrix, [r̃k]

is either cuboid, parallelepiped or interval set
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using interval sets == wrapping effect

other approaches try to minimize wrapping through

choosing good coordinate frame

We choose different coordinate frame: [rk] =

Bk[r̂k],

[rk+1] = [Ak][rk] + [zk+1] =

Bk+1

(
B−1

k+1[Ak]Bk[r̂k] + B−1
k+1[zk+1]

)

[r0] = [B0][r̂0], [B0] = {Id}
[r̂k+1] =

(
[B−1

k+1][Ak][Bk]
)
[r̂k] + [B−1

k+1][zk+1]

[rk+1] = [Bk+1][r̂k+1]
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Usually Bk+1 is a Q-factor from QR decom-

position of U ∈ [Ak][Bk], but first we permute

columns of U , so that their norms are decreas-

ing

Even better:

[rk+1] = Ck+1[r0] + [r̃k+1]

[r̃k+1] = [Ak][r̃k] + [zk+1] + ([Ak]Ck − Ck+1)[r0],

[r̃0] = 0

and C0 = Id, Ck+1 ∈ [Ak]Ck

[r̃k] is evaluated using previous method
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When Lohner algorithm can fail?

Only the first step - the generation of the

rough enclosure - is heuristic. It can happen

that a solution does not exists on [0, hk].
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Easy first order rough enclosure

x′ = f(x), x ∈ Rn, f ∈ C1 (2)

ϕ(t, x) the flow induced by (2)

Theorem: Let h > 0. Let X, Z be interval

sets, X ⊂ intZ. Suppose that

Y := interval hull(X + [0, h]f(Z)) ⊂ intZ (3)

then

ϕ([0, h], X) ⊂ Y (4)

Problem: For x′ = −Lx we have a bound for

the time step

h <
1

L
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Insert here an example for n = 2 with

one dissipative coordinate
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Improved rough enclosure for

dissipative ODE

x′i = fi(x) = λixi + Ni(x), i = 1, . . . , n (5)

Theorem: h > 0, X ⊂ Z ⊂ Rn - interval sets.

Let D ⊂ {1, . . . , n} ( dissipative(damped) di-

rections), if k ∈ D, then

λk < 0

λkxk + N−
k < ẋk < λkxk + N+

k

where Nk(Z) ⊂ (N−
k , N+

k ).

For k ∈ D we set

b±k =
N±

k

−λk

g±k =
(
X±

k − b±k
)

eλkh + b±k .
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Let Y = Πn
i=1Yi be such that

Yi = Xi + [0, h]fi(Z), i /∈ D

Yi = Zi, i ∈ D.

Then

ϕ([0, h], X) ⊂ Y,

provided the following conditions are satisfied
for i = 1, . . . , n

1. if i /∈ D, then

Yi ⊂ intZi

2. upper bounds for i ∈ D

if Z+
i < b+i , then Z+

i ≥ g+
k

3. lower bounds for i ∈ D

if Z−i > b−i , then Z−i ≤ g−k
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For

x′ = −Lx, L > 0

and X = [−1,1] one obtains Y = [−1,1] and

no bound on h > 0.
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Computation of the Poincaré map

•One needs a procedure which gives a rigorous

estimates between time steps for x-variable for

ODE - rough enclosure ok

•we need to come very close to section

•the section error is minimized for sections per-

pendicular to the flow
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Lohner algorithm

[xk] = xk + [rk], where [rk] = Qk[r̃k] or [rk] =

Ck[r0] + Qk[r̃k]

1. Finding rough enclosure [W ] of ϕ([0, hk], [xk])

2. [Ak] = ∂Φ
∂x (h, [xk])

3. xk+1 = m(Φ(hk, xk)),

[zk+1] = Rem([W ]) + Φ(hk, xk)− xk+1

4. [rk+1] = [Ak]·[rk+1]+[zk+1] - the rearange-

ment computations

Step 2 - the most time consuming part (we

practically solve variational equation)
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Cost(Step2) ≈ n?Cost(Step3)

Cost(Step3) >> Cost(Step1 + Step4)

Very slow compared to nonrigorous computa-

tions by factor of order 10n.

Reasons:

the interval arithmetics is at least two times

slower than nonrigorous one

The Lohner algorithm is a C0-algorithm, but

internally is in fact C1

Question: Can one do better with C0 algo-

rithm?
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C0- algorithm

[xk] = xk + B(0, rk), where r ∈ R, B(0, r) - the

ball of radius r. The choice of the good norm

is an important parameter of algorithm.

1. Find rough enclosures ϕ([0, hk], [xk]) ⊂ [W ]

of and ϕ([0, hk], xk) ⊂ [W1]

2. compute l = l(df([W ]))

3. xk+1 = m(Φ(hk, xk) + Rem([W1])), zk+1 =

Φ(hk, xk) + Rem([W1])− xk+1

4. rk+1 = rkelhk + ‖zk+1‖

Question: what is l(df([W ]))?
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Propagation of errors according to the
typical numerical analysis textbook:

x′ = f(x) (6)

|f(x)− f(y)| ≤ L|x− y|.

Let ϕ(t, x0) be a solution of (6) with an initial

condition x(0) = x0. Then

|ϕ(t, x)− ϕ(t, y)| ≤ eLt|x− y|, t ≥ 0

This is very bad estimate
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Examples:

• x′ = −10x , predicts error-growth: e10t

• for the Lorenz attractor (from the proof by

Galias and P. Z.), gives an estimate for Lips-

chitz constant for the Poincare map L > 109,

while from simulations it is clear that L ≈ 5−6

• in the proof for Rössler system ( P.Z. ), gives

an estimate for the Lipschitz constant of Poincare

map L > 5 · 1041, while from simulations L ≈
2− 3 cosmic computation time
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Logarithmic norms

Logarithmic norm: Q ∈ Rn×n

µ(Q) = lim
h>0,h→0

‖I + hQ‖ − 1

h

can be negative !!!

• for Euclidean norm

µ(Q) = the largest eigenvalue of 1/2(Q+QT ).

• for max norm ‖x‖ = maxk |xk|
µ(Q) = max

k
(qkk +

∑

i 6=k

|qki|)

• for norm ‖x‖ =
∑

k |xk|
µ(Q) = max

i
(qii +

∑

k 6=i

|qki|)

27



Logarithmic norms - Fundamental
lemma

Lemma: Let φ(t, x) be a flow induced by

x′ = f(x).

Assume that Z is a convex set,

y([0, T ]), ϕ([0, T ], x0) ∈ Z

µ

(
∂f

∂x
(η)

)
≤ l, for η ∈ Z

∥∥∥∥
dy

dt
(t)− f(y(t))

∥∥∥∥ ≤ δ.

Then for 0 ≤ t ≤ T we have

‖ϕ(t, x0)−y(t)‖ ≤ elt‖y(0)−x0‖+δ
elt − 1

l
, if l 6= 0.

For l = 0 we have

‖ϕ(t, x0)− y(t)‖ ≤ ρ + δt.

In particular: elT is a Lipschitz constant for
φ(t, ·) in Z (if Z is forward invariant).
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Examples:

• x′ = −10x , predicts error-growth: e−10t very

good

• in the proof for Rössler system ( P.Z. ) log-

aritmic norm based on the euclidian norm was

used, the estimate for the Lipschitz constant

of Poincare map in some region was L > 2·104,

while from simulations L ≈ 2−3 this is doable.

Using Lohner algorithm with cuboids one get

Lipschitz constant around 60 and using dou-

bletons something like 6− 10.
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Lohner-type algorithm for differential

inclusion

x′(t) ∈ f(x(t)) + [δ] (7)

x ∈ Rn, [δ] ⊂ Rn

Find a rigorous enclosure for x(t).

We compare the solutions of two ODEs

x′1 = f(x1), (8)

x′2 = f(x2) + y(t) (9)

x1(t0) = x2(t0) = x0 (10)

where y(t) ∈ [δ] is given (but unknown) func-

tion.
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Lohner-type algorithm for differential

inclusion - Fundamental Lemma

Lemma: Let:

[W1] ⊂ [W2] ⊂ Rn - convex and compact.

x1([t0, t0+h]) ⊂ [W1], x2([t0, t0+h]) ⊂ [W2] for

any continuous function y : [t0, t0 + h] → [δ].

Then the following inequality holds for t ∈ [t0, t0+

h] and for i = 1, . . . , n1

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0
eJ(t−s)C ds

)

i

, (11)

where

Ci ≥ sup |[δi]| , i = 1, . . . , n1

Jij ≥ sup
∂fi

∂xj
([W2])if i = j,

Jij ≥ sup

∣∣∣∣∣
∂fi

∂xj
([W2])

∣∣∣∣∣ if i 6= j.
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Lohner-type algorithm for differential

inclusion - one step

ϕ(t, x0, [δ]) - a solution of x′ ∈ f(x)+[δ], x(0) =

x0 .

ϕ(t, x0) - a solution of x′ = f(x), x(0) = x0.

Input data:

tk, hk - a time step,

[xk] ⊂ Rn, such that ϕ(tk, [x0], [δ]) ⊂ [xk].

Output data:

tk+1 = tk + hk,

[xk+1] ⊂ Rn1, such that ϕ(tk+1, [x0], [δ]) ⊂ [xk+1].
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Lohner-type algorithm for differential

inclusion - one step - details

1. Generation of a priori bounds for ϕ.

Find a convex and compact set [W2] ⊂ Rn,

such that

ϕ([0, hk], [xk], [δ]) ⊂ [W2]. (12)

2. Computation of ϕ. We use Lohner algo-

rithm to obtain [xk+1] ⊂ Rn and a convex and

compact set [W1] ⊂ Rn, such that

ϕ(hk, [xk]) ⊂ [xk+1]

ϕ([0, hk], [xk]) ⊂ [W1]
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Lohner-type algorithm for differential

inclusion - one step - details

continued

3. Computation of perturbation. Using Fun-

damental Lemma we find a set [∆] ⊂ Rn, such

that

ϕ(tk+1, [x0], [δ]) ⊂ ϕ(hk, [xk]) + [∆]. (13)

Hence

ϕ(tk+1, [x0], [y0]) ⊂ [xk+1] = [xk+1] + [∆]

(14)
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Lohner-type .. - details and comments

Part 3 - details

1. We set

Ci = right (|[δi]|) , i = 1, . . . , n1

Jij = right

(
∂fi

∂xi
([W2])

)
if i = j,

Jij = right

(∣∣∣∣∣
∂fi

∂xj
([W2])

∣∣∣∣∣

)
, if i 6= j.

2.D =
∫ h
0 eJ(h−s)C ds

3. [∆i] = [−Di, Di], for i = 1, . . . , n1
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Lohner-type .. - Computation of
∫ t
0 eA(t−s)C ds.

∫ t

0
eA(t−s)C ds = t




∞∑

n=0

(At)n

(n + 1)!


 · C. (15)

We fix any norm ‖ · ‖, preferably the L∞-norm,
(‖x‖∞ = maxi |xi|).

Ã = At, An =
Ãn

(n + 1)!
,

∞∑

n=0

(At)n

(n + 1)!
=

∞∑

n=0

An

A0 = Id, An+1 = An · Ã

n + 2

Remainder: ‖AN+k‖ ≤ ‖AN‖·
∥∥∥∥ Ã
N+2

∥∥∥∥
k
. If

∥∥∥∥ Ã
N+2

∥∥∥∥ <

1, then
∥∥∥∥∥∥

∑

n>N

An

∥∥∥∥∥∥
≤ ‖AN‖ ·

∥∥∥∥∥
Ã

N + 2

∥∥∥∥∥ ·
(
1−

∥∥∥∥∥
Ã

N + 2

∥∥∥∥∥

)−1
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Lohner-type .. - Representation of

sets and rearrangement.

Lohner’s approach.

In part 3:

[xk+1] = [xk+1] + [∆] (16)

Evaluations 2 and 3. In this representation

[xk] = xk + [Bk][r̃k]. (17)

In the context of our algorithm in part 3 we

obtain

[xk+1] = xk+1 + [Bk+1][rk+1]. (18)

We set

xk+1 = m(xk+1 + [∆])

[r̃k+1] = [rk+1] + [B−1
k+1]

(
xk+1 + [∆]− xk+1

)
.
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Lohner-type .. - Representation of

sets and rearrangement II

Evaluation 4. In this representation

[xk] = xk + Ck[r0] + [Bk][r̃k]. (19)

In the context of our algorithm in part 3 we

obtain

[xk+1] = xk+1+Ck+1[r0]+[Bk+1][rk+1]. (20)

Equation (16) is taken into account exactly in

the same way as in previous evaluations, i.e.

we use equations (19) and (19).
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Variational equations,

Cn-computations

Let
∂ϕi

∂xj
(t, x0) = Vi,j(t),

∂2ϕi

∂xj∂xk
(t, x0) = Hijk(t).

It is well known that

x′ = f(x), (21)
d

dt
Vij(t) =

n∑

s=1

∂fi

∂xs
(x)Vsj(t) (22)

d

dt
Hijk(t) =

n∑

s,r=1

∂2fi

∂xs∂xr
(x)Vrk(t)Vsj(t) +

n∑

s=1

∂fi

∂xs
(x)Hsjk(x), (23)

with the initial conditions

x(0) = x0, V (0) = Id,

Hijk(0) = 0, i, j, k = 1, . . . , n.
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An algorithm for Cn-computations

Simple approach: Apply C0-Lohner algorithm

to the system of variational equations, this

works rather badly

• the control of wrapping effect may for x vari-

ables may not work

• computationally ineffective because it totally

ignores the structure of the system,

Let Φ(h, x) be a Taylor expansion for ϕ(h, x)

of order p, then V (h, x) = ∂Φ
∂x (h, x) + hp+1

Observe that ∂Φ
∂x (h, [W ]) is already computed

in step 2 of C0 algorithm
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An effective Cn-algorithm

•takes into account the structure of the system

variational equations

• the rearrangement is done separately which

partial derivatives of given order

• implemented in CAPD library, we did some

computer assisted proofs involving C5 compu-

tations for ODE n = 2,3
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