Resonance transitions for Oterma comet in Sun-Jupiter system

D. Wilczak, P. Zgliczyński

Bibliography

KLMR W. S. Koon, M. W. Lo, J. E. Marsden and S. D. Ross, *Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics*, Chaos, 10(2000), no. 2, 427–469

WZ1 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted Proof, Comm. Math. Phys. 234 (2003) 1, 37-75

WZ2 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem, Comm. Math. Phys. 259, 561-576 (2005)

The physical problem and the numerical results from KLMR

Observation: Jupiter comets (*Oterma, Gehrels* 3) make rapid transition from heliocentic orbits outside Jupiter to heliocentric orbits inside the Orbit of Jupiter and vice versa.

The interior heliocentric orbit is close to the 3 : 2 resonance (three revolutions around the Sun in two Jupiter periods) while the exterior heliocentric one is near 2 : 3 resonance.

KLMR: PCR3BP (planar restricted three body problem) as a model for the Sun-Jupiter-comet system.

Methods of dynamical system theory: the transitions are the consequence of the existence of several homo- and heteroclinic orbits between the libration points.

In fact the existence of symbolic dynamics on three symbols was claimed.

Symbolic dynamics - definitions

Bernoulli Shift : $\Sigma_k = \{1, 2, \dots, k\}^{\mathbf{Z}}, \ \sigma: \Sigma_k \to \Sigma_k$

 $\sigma(c)_i = c_{i+1}$

Bernoulli shifts are dynamical equivalent to a coin tossing.

Definition. $P: X \to X$ - continuous, $S \subset X$, S-compact, we say that P has a symbolic dynamics on k symbols on S, when the following conditions are satisfied

- P(S) = S, i.e. S is P-invariant
- there exists a continuous map $\pi: S \to \Sigma_k$, such that $\sigma \circ \pi = \pi \circ P$
- $\pi(S) = \Sigma_k$ (or at least $\pi(S)$ is a large subset of Σ_k)

PCR3BP problem

$$\ddot{x} - 2\dot{y} = \Omega_x(x, y), \qquad \ddot{y} + 2\dot{x} = \Omega_y(x, y), \quad (1)$$

$$\Omega(x,y) = \frac{x^2 + y^2}{2} + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2} + \frac{\mu(1 - \mu)}{2}$$
$$r_1 = \sqrt{(x + \mu)^2 + y^2}$$
$$r_2 = \sqrt{(x - 1 + \mu)^2 + y^2}$$

Jacobi integral:

 $C(x, y, \dot{x}, \dot{y}) = -(\dot{x}^2 + \dot{y}^2) + 2\Omega(x, y) = \text{const.}$

 $\mathcal{M}(\mu, C) = \{(x, y, \dot{x}, \dot{y}) | C(x, y, \dot{x}, \dot{y}) = C\},\$ $C = 3.03, \ \mu = 0.0009537 - Oterma \ comet \ in$ Sun-Jupiter system.

Sections and Poincaré maps

Sections: $\Theta = \{(x, y, \dot{x}, \dot{y}) \in \mathcal{M} \mid y = 0\}, \ \Theta_+ = \Theta \cap \{\dot{y} > 0\}, \ \Theta_- = \Theta \cap \{\dot{y} < 0\}.$

Coordinates on
$$\Theta_{\pm}$$
: T_{\pm} : $U \subset \mathbb{R}^2 \to \Theta_{\pm}$
 $T_{\pm}(x,\dot{x}) = (x,0,\dot{x},\pm\sqrt{2\Omega(x,0)-\dot{x}^2-C})$ (2)

Poincaré maps between sections Θ_{\pm}

$$P_{+}: \Theta_{+} \to \Theta_{+}$$
$$P_{-}: \Theta_{-} \to \Theta_{-}$$
$$P_{\frac{1}{2},+}: \Theta_{+} \to \Theta_{-}$$
$$P_{\frac{1}{2},-}: \Theta_{-} \to \Theta_{+}.$$

$$P_{+}(x) = P_{\frac{1}{2},-} \circ P_{\frac{1}{2},+}(x),$$

$$P_{-}(x) = P_{\frac{1}{2},+} \circ P_{\frac{1}{2},-}(x)$$

Symmetries in PCR3BP

If (x(t), y(t)) is a trajectory for PCR3BP, then (x(-t), -y(-t)) is also a trajectory.

Let $R: \Theta_{\pm} \to \Theta_{\pm} R(x, \dot{x}) = (x, -\dot{x})$ for $(x, \dot{x}) \in \Theta_{\pm}$. We have

if $P_{\pm}(x_0) = x_1$, then $P_{\pm}(R(x_1)) = R(x_0)$ if $P_{\frac{1}{2},\pm}(x_0) = x_1$, then $P_{\frac{1}{2},\mp}(R(x_1)) = R(x_0)$

OUR RESULTS FOR PCR3BP

For C = 3.03, $\mu = 0.0009537$ - Oterma values

- **0.** periodic orbits L_1^* and L_2^* around libration points L_1 and L_2 , respectively.
- 1. topologically transversal heteroclinic orbits connecting L_1^* and L_2^* and vice versa in the Jupiter region.
- 2. two topologically transversal homoclinic orbit to L_1^* in interior (Sun) region and to L_2^* in exterior region.
- 3. symbolic dynamics:

$$S \to S, L_1^*, \quad L_1^* \to L_1^*, S, L_2^* \quad L_2^* \to L_1^*, L_2^*, X, \quad X \to X, L_2^*.$$

Symbolic dynamics for PCR3BP

$$\begin{aligned} f_{(1,1)} &= P_+ \\ f_{(2,1)} &= P_- \circ P_{1/2,+} \circ (P_{1/2,-} \circ P_{1/2,+})^4 \circ P_+, \\ f_{(1,2)} &= P_+ \circ P_{1/2,-} \circ (P_{1/2,+} \circ P_{1/2,-})^4 \circ P_-, \\ f_{(2,2)} &= P_-. \end{aligned}$$

Theorem. For every $\alpha = {\alpha_i} \in {1,2}^{\mathbb{Z}}$ there exists $x_0 \in H_{\alpha_0}$ (close to $L^*_{\alpha_0}$), such that

- the trajectory of x_0 is defined for $t \in (-\infty, \infty)$ and stays in the Jupiter region
- $x_n = f_{(\alpha_n, \alpha_{n-1})} \circ \ldots \circ f_{(\alpha_2, \alpha_1)} \circ f_{(\alpha_1, \alpha_0)}(x_0) \in H_{\alpha_n}$ for n > 0

•
$$x_n = f_{(\alpha_{n+1},\alpha_n)}^{-1} \circ \ldots \circ f_{(\alpha_{-1},\alpha_{-2})}^{-1} \circ f_{(\alpha_0,\alpha_{-1})}^{-1}(x_0) \in H_{\alpha_n}$$
 for $n < 0$.

Moreover,

- periodic orbits: If α is k-periodic, then x_0 can be chosen so that $x_k = x_0$ (i.e. x_0 is periodic).
 - homo- and heterclinic orbits: If $\alpha_k = i_-$ for $k \leq k_-$ and $\alpha_k = i_+$ for $k \geq k_+$, where $i_-, i_+ \in \{1, 2\}$, then

$$\lim_{n \to -\infty} x_n = L_{i_-}^*, \qquad \lim_{n \to \infty} x_n = L_{i_+}^*$$

h-sets on the plane - definition h-set N on the plane:

- $c, u, s \in \mathbf{R}^2$, u, s linearly independent
- |N| = c + [-1, 1]u + [-1, 1]s the support of N
- $N^+ = c + [-1, 1]u + \{-1, 1\}s$ horizontal edges N
- $N^{le} = c u + [-1, 1]s$, $N^{re}c + u + [-1, 1]s$ -'left' and 'right' edfe of N
- $S(N)_l = c + (-\infty, 1)u + (-\infty, \infty)s$, $S(N)_r = c + (1, \infty)u + (-\infty, \infty)s$ - 'left' and 'right' side of N

Covering relation - Definition N, M - h-sets, $f: |N| \to \mathbb{R}^2$ - continuous We say, that $N \stackrel{f}{\Longrightarrow} M$ (N f-covers M) if

- $f(|N|) \subset \operatorname{int}(S(M)_l \cup |M| \cup S(M)_r)$ (I)
- one of the conditions (O) or (R) is satisfied
 (O) f(N^{le}) ⊂ S(M)_l i f(N^{re}) ⊂ S(M)_r
 (R) f(N^{le}) ⊂ S(M)_r i f(N^{re}) ⊂ S(M)_l

Main theorem on covering relations

Theorem.(P.Z.) N_0, N_1, \ldots, N_k - h-sets. $f_i : |N_i| \rightarrow \mathbb{R}^2$ -continuous for $i = 0, \ldots, k - 1$. Assume, that

$$N_0 \xrightarrow{f_0} N_1 \xrightarrow{f_1} N_2 \dots \xrightarrow{f_{k-1}} N_k.$$

Then there exists $x \in int|N_0|$ such that

 $f_i \circ f_{i-1} \circ \ldots \circ f_0(x) \in \operatorname{int} |N_{i+1}|, \quad i = 0, \ldots, k-1.$ If moreover $N_k = N_0$, then x can be chosen so that

$$f_{k-1} \circ f_{k-2} \circ \ldots \circ f_0(x) = x.$$

Local hyperbolicity - cone conditions

 $f:\mathbf{R}^2\to\mathbf{R}^2$ - \mathcal{C}^1 maps. $f(\mathbf{0})=\mathbf{0}.$ U - convex, $\mathbf{0}\in U$

$$Df(U) := \begin{pmatrix} \lambda_1(U) & \varepsilon_1(U) \\ \varepsilon_2(U) & \lambda_2(U) \end{pmatrix}.$$
$$f(x) \in Df(U) \cdot x, \quad \text{for } x \in U$$

$$\begin{aligned} \varepsilon_1'(U) &= \sup\{|\varepsilon| : \varepsilon \in \varepsilon_1(\mathbf{U})\},\\ \varepsilon_2'(U) &= \sup\{|\varepsilon| : \varepsilon \in \varepsilon_2(\mathbf{U})\},\\ \lambda_1'(U) &= \inf\{|\lambda_1| : \lambda_1 \in \lambda_1(\mathbf{U})\},\\ \lambda_2'(U) &= \sup\{|\lambda_2| : \lambda_2 \in \lambda_2(\mathbf{U})\}. \end{aligned}$$

Definition Let x_* be a fixed point for f. We say that f is hyperbolic (satisfies cone conditions) on $N \ni x_*$, if there exists a local coordinate frame on N, such that (in this new coordinates)

$$x_* = 0$$

$$\varepsilon'_1(N)\varepsilon'_2(N) < (1 - \lambda'_2(N))(\lambda'_1(N) - 1).$$

$$N = [-\alpha_1, \alpha_1] \times [-\alpha_2, \alpha_2],$$

where $\alpha_1 > 0$, $\alpha_2 > 0$ are such that the following inequalities are satisfied

$$\frac{\varepsilon_1'(N)}{\lambda_1'(N) - 1} < \frac{\alpha_1}{\alpha_2} < \frac{1 - \lambda_2'(N)}{\epsilon_2'(N)}.$$
(3)

Theorem Assume that f is hyperbolic on N.

- 1. if $f^k(x) \in N$ for $k \ge 0$, then $\lim_{k\to\infty} f^k(x) = x_*$,
- 2. if $y_k \in N$ and $f(y_{k-1}) = y_k$ for $k \leq 0$, then $\lim_{k \to -\infty} y_k = x_*$.

Theorem. Assume that g is hyperbolic on N_m and f is hiperboliczny na N_0 . Let $x_g = g(x_g) \in$ N_m and $x_f = f(x_f) \in N_0$. Assume that

$$N_{0} \stackrel{f}{\Longrightarrow} N_{0} \stackrel{f_{0}}{\Longrightarrow} N_{1} \stackrel{f_{1}}{\Longrightarrow} N_{2} \stackrel{f_{2}}{\Longrightarrow} \dots$$
$$\stackrel{f_{m-1}}{\Longrightarrow} N_{m} \stackrel{g}{\Longrightarrow} N_{m},$$

then there exists a sequence $(x_k)_{k=-\infty}^0$ (*this is a backward orbit*), $f(x_k) = x_{k+1}$ for k < 0 such that

$$\begin{aligned} x_k \in N_0, \quad k \leq 0, \\ f_{i-1} \circ f_{i-2} \circ \ldots \circ f_0(x_0) \in N_i & \text{for } i = 1, \dots, m, \\ g^n \circ f_{m-1} \circ \ldots \circ f_0(x_0) \in N_m & \text{for } n > 0, \\ \lim_{k \to -\infty} x_k = x_f, \\ \lim_{k \to \infty} g^k \circ f_{m-1} \circ \ldots \circ f_0(x_0) = x_g. \end{aligned}$$

15

What did we proved with computer assistance

$$\begin{array}{c} H_1 \stackrel{P_+}{\Longrightarrow} H_1 \stackrel{P_+}{\Longrightarrow} H_1^2 \stackrel{P_{1/2,+}}{\Longrightarrow} N_0 \\ \stackrel{P_{1/2,-}}{\Longrightarrow} N_1 \stackrel{P_{1/2,+}}{\Longrightarrow} N_2 \stackrel{P_{1/2,-}}{\Longrightarrow} N_3 \stackrel{P_{1/2,+}}{\Longrightarrow} N_4 \\ \stackrel{P_{1/2,-}}{\Longrightarrow} N_5 \stackrel{P_{1/2,+}}{\Longrightarrow} N_6 \stackrel{P_{1/2,-}}{\Longrightarrow} N_7 \\ \stackrel{P_{1/2,+}}{\Longrightarrow} H_2^2 \stackrel{P_-}{\Longrightarrow} H_2 \stackrel{P_-}{\Longrightarrow} H_2. \end{array}$$

From symmetry

 $H_{2} = R(H_{2}) \stackrel{P_{-}}{\Longrightarrow} R(H_{2}^{2}) \stackrel{P_{1/2,-}}{\Longrightarrow} R(N_{7})$ $\stackrel{P_{1/2,+}}{\Longrightarrow} R(N_{6}) \stackrel{P_{1/2,-}}{\Longrightarrow} R(N_{5}) \stackrel{P_{1/2,+}}{\Longrightarrow} R(N_{4})$ $\stackrel{P_{1/2,-}}{\Longrightarrow} R(N_{3}) \stackrel{P_{1/2,+}}{\Longrightarrow} R(N_{2}) \stackrel{P_{1/2,-}}{\Longrightarrow} R(N_{1})$ $\stackrel{P_{1/2,+}}{\Longrightarrow} R(N_{0}) \stackrel{P_{1/2,-}}{\Longrightarrow} R(H_{1}^{2}) \stackrel{P_{+}}{\Longrightarrow} R(H_{1}) = H_{1}$