Resonance transitions for Oterma comet in Sun-Jupiter system

D. Wilczak, P. Zgliczyński

Bibliography

KLMR W. S. Koon, M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 10(2000), no. 2, 427-469

WZ1 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted Proof, Comm. Math. Phys. 234 (2003) 1, 37-75

WZ2 D. Wilczak, P. Zgliczynski, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem, Comm. Math. Phys. 259, 561-576 (2005)

The physical problem and the numerical results from KLMR

Observation: Jupiter comets (Oterma, Gehrels 3) make rapid transition from heliocentic orbits outside Jupiter to heliocentric orbits inside the Orbit of Jupiter and vice versa.

The interior heliocentric orbit is close to the 3:2 resonance (three revolutions around the Sun in two Jupiter periods) while the exterior heliocentric one is near $2: 3$ resonance.

KLMR: PCR3BP (planar restricted three body problem) as a model for the Sun-Jupiter-comet system.

Methods of dynamical system theory: the transitions are the consequence of the existence of several homo- and heteroclinic orbits between the libration points.

In fact the existence of symbolic dynamics on three symbols was claimed.

Symbolic dynamics - definitions

Bernoulli Shift : $\Sigma_{k}=\{1,2, \ldots, k\}^{\mathrm{Z}}, \sigma: \Sigma_{k} \rightarrow$ Σ_{k}

$$
\sigma(c)_{i}=c_{i+1}
$$

Bernoulli shifts are dynamical equivalent to a coin tossing.

Definition. $P: X \rightarrow X$ - continuous, $S \subset X$, S-compact, we say that P has a symbolic dynamics on k symbols on S, when the following conditions are satisfied

- $P(S)=S$, i.e. S is P-invariant
- there exists a continuous map $\pi: S \rightarrow \Sigma_{k}$, such that $\sigma \circ \pi=\pi \circ P$
- $\pi(S)=\Sigma_{k}$ (or at least $\pi(S)$ is a large subset of Σ_{k})

PCR3BP problem

$$
\begin{equation*}
\ddot{x}-2 \dot{y}=\Omega_{x}(x, y), \quad \ddot{y}+2 \dot{x}=\Omega_{y}(x, y), \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\Omega(x, y) & =\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}+\frac{\mu(1-\mu)}{2} \\
r_{1} & =\sqrt{(x+\mu)^{2}+y^{2}} \\
r_{2} & =\sqrt{(x-1+\mu)^{2}+y^{2}}
\end{aligned}
$$

Jacobi integral:

$$
C(x, y, \dot{x}, \dot{y})=-\left(\dot{x}^{2}+\dot{y}^{2}\right)+2 \Omega(x, y)=\text { const. }
$$

$$
\mathcal{M}(\mu, C)=\{(x, y, \dot{x}, \dot{y}) \mid C(x, y, \dot{x}, \dot{y})=C\}
$$

$$
C=3.03, \mu=0.0009537-\text { Oterma comet in }
$$ Sun-Jupiter system.

Sections and Poincaré maps

Sections: $\Theta=\{(x, y, \dot{x}, \dot{y}) \in \mathcal{M} \mid y=0\}, \Theta_{+}=$ $\Theta \cap\{\dot{y}>0\}, \Theta_{-}=\Theta \cap\{\dot{y}<0\}$.

Coordinates on $\Theta_{ \pm}: T_{ \pm}: U \subset \mathbf{R}^{2} \rightarrow \Theta_{ \pm}$

$$
\begin{equation*}
T_{ \pm}(x, \dot{x})=\left(x, 0, \dot{x}, \pm \sqrt{2 \Omega(x, 0)-\dot{x}^{2}-C}\right) \tag{2}
\end{equation*}
$$

Poincare maps between sections $\Theta_{ \pm}$

$$
\begin{aligned}
P_{+} & : \Theta_{+} \rightarrow \Theta_{+} \\
P_{-} & : \Theta_{-} \rightarrow \Theta_{-} \\
P_{\frac{1}{2},+} & : \Theta_{+} \rightarrow \Theta_{-} \\
P_{\frac{1}{2},-} & : \Theta_{-} \rightarrow \Theta_{+} .
\end{aligned}
$$

$$
\begin{aligned}
& P_{+}(x)=P_{\frac{1}{2},-} \circ P_{\frac{1}{2},+}(x), \\
& P_{-}(x)=P_{\frac{1}{2},+} \circ P_{\frac{1}{2},-}(x)
\end{aligned}
$$

Symmetries in PCR3BP

If $(x(t), y(t))$ is a trajectory for PCR3BP, then $(x(-t),-y(-t))$ is also a trajectory.

Let $R: \Theta_{ \pm} \rightarrow \Theta_{ \pm} R(x, \dot{x})=(x,-\dot{x})$ for $(x, \dot{x}) \in$ $\Theta_{ \pm}$. We have
if $P_{ \pm}\left(x_{0}\right)=x_{1}, \quad$ then $\quad P_{ \pm}\left(R\left(x_{1}\right)\right)=R\left(x_{0}\right)$
if $P_{\frac{1}{2}, \pm}\left(x_{0}\right)=x_{1}, \quad$ then $\quad P_{\frac{1}{2}, \mp}\left(R\left(x_{1}\right)\right)=R\left(x_{0}\right)$

OUR RESULTS FOR PCR3BP

For $C=3.03, \mu=0.0009537$ - Oterma values
0. periodic orbits L_{1}^{*} and L_{2}^{*} around libration points L_{1} and L_{2}, respectively.

1. topologically transversal heteroclinic orbits connecting L_{1}^{*} and L_{2}^{*} and vice versa in the Jupiter region.
2. two topologically transversal homoclinic orbit to L_{1}^{*} in interior (Sun) region and to L_{2}^{*} in exterior region.
3. symbolic dynamics:

$$
\begin{aligned}
S \rightarrow S, L_{1}^{*}, \quad L_{1}^{*} \rightarrow & L_{1}^{*}, S, L_{2}^{*} \quad L_{2}^{*} \rightarrow L_{1}^{*} \\
& L_{2}^{*}, X, \quad X \rightarrow X, L_{2}^{*} .
\end{aligned}
$$

Symbolic dynamics for PCR3BP

$$
\begin{aligned}
& f_{(1,1)}=P_{+} \\
& f_{(2,1)}=P_{-} \circ P_{1 / 2,+} \circ\left(P_{1 / 2,-} \circ P_{1 / 2,+}\right)^{4} \circ P_{+} \\
& f_{(1,2)}=P_{+} \circ P_{1 / 2,-} \circ\left(P_{1 / 2,+} \circ P_{1 / 2,-}\right)^{4} \circ P_{-}, \\
& f_{(2,2)}=P_{-}
\end{aligned}
$$

Theorem. For every $\alpha=\left\{\alpha_{i}\right\} \in\{1,2\}^{\mathbf{Z}}$ there exists $x_{0} \in H_{\alpha_{0}}$ (close to $L_{\alpha_{0}}^{*}$), such that

- the trajectory of x_{0} is defined for $t \in(-\infty, \infty)$ and stays in the Jupiter region
- $x_{n}=f_{\left(\alpha_{n}, \alpha_{n-1}\right)} \circ \ldots \circ f_{\left(\alpha_{2}, \alpha_{1}\right)} \circ f_{\left(\alpha_{1}, \alpha_{0}\right)}\left(x_{0}\right) \in$ $H_{\alpha_{n}}$ for $n>0$
- $x_{n}=f_{\left(\alpha_{n+1}, \alpha_{n}\right)}^{-1} \circ \ldots \circ f_{\left(\alpha_{-1}, \alpha_{-2}\right)}^{-1} \circ f_{\left(\alpha_{0}, \alpha_{-1}\right)}^{-1}\left(x_{0}\right) \in$ $H_{\alpha_{n}}$ for $n<0$.

Moreover,
periodic orbits: If α is k-periodic, then x_{0} can be chosen so that $x_{k}=x_{0}$ (i.e. x_{0} is periodic).
homo- and heterclinic orbits: If $\alpha_{k}=i_{-}$for $k \leq k_{-}$and $\alpha_{k}=i_{+}$for $k \geq k_{+}$, where $i_{-}, i_{+} \in\{1,2\}$, then

$$
\lim _{n \rightarrow-\infty} x_{n}=L_{i_{-}}^{*}, \quad \lim _{n \rightarrow \infty} x_{n}=L_{i_{+}}^{*}
$$

h-sets on the plane - definition

h-set N on the plane:

- $c, u, s \in \mathbf{R}^{2}, u, s$ - linearly independent
- $|N|=c+[-1,1] u+[-1,1] s$ - the support of N
- $N^{+}=c+[-1,1] u+\{-1,1\} s$ - horizontal edges N
- $N^{l e}=c-u+[-1,1] s, N^{r e} c+u+[-1,1] s-$ 'left' and 'right' edfe of N
- $S(N)_{l}=c+(-\infty, 1) u+(-\infty, \infty) s$, $S(N)_{r}=c+(1, \infty) u+(-\infty, \infty) s$ - 'left' and 'right' side of N

Covering relation - Definition
N, M - h-sets, $f:|N| \rightarrow \mathbf{R}^{2}$ - continuous
We say, that $N \stackrel{f}{\Rightarrow} M(N$ f-covers $M)$ if

- $f(|N|) \subset \operatorname{int}\left(S(M)_{l} \cup|M| \cup S(M)_{r}\right)$
(I)
- one of the conditions (O) or (R) is satisfied (O) $f\left(N^{l e}\right) \subset S(M)_{l}$ i $f\left(N^{r e}\right) \subset S(M)_{r}$
$(\mathrm{R}) f\left(N^{l e}\right) \subset S(M)_{r}$ i $f\left(N^{r e}\right) \subset S(M)_{l}$

Main theorem on covering relations

Theorem.(P.Z.)
$N_{0}, N_{1}, \ldots, N_{k}$ - h-sets. $f_{i}:\left|N_{i}\right| \rightarrow \mathbf{R}^{2}$-continuous for $i=0, \ldots, k-1$. Assume, that

$$
N_{0} \stackrel{f_{0}}{\Rightarrow} N_{1} \xrightarrow{f_{1}} N_{2} \ldots \stackrel{f_{k-1}}{\Rightarrow} N_{k} .
$$

Then there exists $x \in \operatorname{int}\left|N_{0}\right|$ such that $f_{i} \circ f_{i-1} \circ \ldots \circ f_{0}(x) \in \operatorname{int}\left|N_{i+1}\right|, \quad i=0, \ldots, k-1$. If moreover $N_{k}=N_{0}$, then x can be chosen so that

$$
f_{k-1} \circ f_{k-2} \circ \ldots \circ f_{0}(x)=x
$$

Local hyperbolicity - cone conditions

$f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}-\mathcal{C}^{1}$ maps. $f(0)=0 . U$ - convex, $0 \in U$

$$
\begin{aligned}
& D f(U):=\left(\begin{array}{ll}
\lambda_{1}(\mathrm{U}) & \varepsilon_{1}(\mathrm{U}) \\
\varepsilon_{2}(\mathrm{U}) & \lambda_{2}(\mathrm{U})
\end{array}\right) . \\
& f(x) \in D f(U) \cdot x,
\end{aligned} \text { for } x \in U \text {. }
$$

$$
\begin{array}{r}
\varepsilon_{1}^{\prime}(U)=\sup \left\{|\varepsilon|: \varepsilon \in \varepsilon_{1}(\mathbf{U})\right\}, \\
\varepsilon_{2}^{\prime}(U)=\sup \left\{|\varepsilon|: \varepsilon \in \varepsilon_{2}(\mathbf{U})\right\}, \\
\lambda_{1}^{\prime}(U)=\inf \left\{\left|\lambda_{1}\right|: \lambda_{1} \in \lambda_{1}(\mathbf{U})\right\}, \\
\lambda_{2}^{\prime}(U)=\sup \left\{\left|\lambda_{2}\right|: \lambda_{2} \in \lambda_{2}(U)\right\} .
\end{array}
$$

Definition Let x_{*} be a fixed point for f. We say that f is hyperbolic (satisfies cone conditions) on $N \ni x_{*}$, if there exists a local coordinate frame on N, such that (in this new coordinates)

$$
\begin{aligned}
x_{*} & =0 \\
\varepsilon_{1}^{\prime}(N) \varepsilon_{2}^{\prime}(N) & <\left(1-\lambda_{2}^{\prime}(N)\right)\left(\lambda_{1}^{\prime}(N)-1\right) . \\
N & =\left[-\alpha_{1}, \alpha_{1}\right] \times\left[-\alpha_{2}, \alpha_{2}\right],
\end{aligned}
$$

where $\alpha_{1}>0, \alpha_{2}>0$ are such that the following inequalities are satisfied

$$
\begin{equation*}
\frac{\varepsilon_{1}^{\prime}(N)}{\lambda_{1}^{\prime}(N)-1}<\frac{\alpha_{1}}{\alpha_{2}}<\frac{1-\lambda_{2}^{\prime}(N)}{\epsilon_{2}^{\prime}(N)} . \tag{3}
\end{equation*}
$$

Theorem Assume that f is hyperbolic on N.

1. if $f^{k}(x) \in N$ for $k \geq 0$, then $\lim _{k \rightarrow \infty} f^{k}(x)=$ x_{*},
2. if $y_{k} \in N$ and $f\left(y_{k-1}\right)=y_{k}$ for $k \leq 0$, then $\lim _{k \rightarrow-\infty} y_{k}=x_{*}$.

Theorem. Assume that g is hyperbolic on N_{m} and f is hiperboliczny na N_{0}. Let $x_{g}=g\left(x_{g}\right) \in$ N_{m} and $x_{f}=f\left(x_{f}\right) \in N_{0}$. Assume that

$$
\begin{aligned}
& N_{0} \stackrel{f}{\Longrightarrow} N_{0} \stackrel{f_{0}}{\Longrightarrow} N_{1} \stackrel{f_{1}}{\Longrightarrow} N_{2} \stackrel{f_{2}}{\Longrightarrow} \ldots \\
& \stackrel{f_{m-1}}{\Longrightarrow} N_{m} \stackrel{g}{\Longrightarrow} N_{m},
\end{aligned}
$$

then there exists a sequence $\left(x_{k}\right)_{k=-\infty}^{0}$ (this is a backward orbit), $f\left(x_{k}\right)=x_{k+1}$ for $k<0$ such that

$$
\begin{aligned}
x_{k} & \in N_{0}, \quad k \leq 0, \\
f_{i-1} \circ f_{i-2} \circ \ldots \circ f_{0}\left(x_{0}\right) \in N_{i} & \text { for } i=1, \ldots, m, \\
g^{n} \circ f_{m-1} \circ \ldots \circ f_{0}\left(x_{0}\right) \in N_{m} & \text { for } n>0, \\
\lim _{k \rightarrow-\infty} x_{k}=x_{f}, &
\end{aligned}
$$

$\lim _{k \rightarrow \infty} g^{k} \circ f_{m-1} \circ \ldots \circ f_{0}\left(x_{0}\right)=x_{g}$.

What did we proved with computer assistance

$$
\begin{aligned}
H_{1} \stackrel{P_{+}}{\Longrightarrow} H_{1} \stackrel{P_{+}}{\Longrightarrow} H_{1}^{2} \stackrel{P_{1 / 2}+}{\Longrightarrow} N_{0} \\
\stackrel{P_{1 / 2,-}}{\Longrightarrow} N_{1} \stackrel{P_{1 / 2,+}}{\Longrightarrow} N_{2} \stackrel{P_{1 / 2,-}}{\Longrightarrow} N_{3} \stackrel{P_{1 / 2,}+}{\Longrightarrow} N_{4} \\
\stackrel{P_{1 / 2,-}}{\Longrightarrow} N_{5} \stackrel{P_{1 / 2,+}+}{\Longrightarrow} N_{6} \stackrel{P_{1 / 2,-}}{\Longrightarrow} N_{7} \\
\stackrel{P_{1 / 2}+}{\Longrightarrow} H_{2}^{2} \stackrel{P_{-}}{\Longrightarrow} H_{2} \stackrel{P_{-}}{\Longrightarrow} H_{2} .
\end{aligned}
$$

From symmetry

$$
\begin{array}{r}
H_{2}=R\left(H_{2}\right) \stackrel{P_{-}}{\Longrightarrow} R\left(H_{2}^{2}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{7}\right) \\
\stackrel{P_{1 / 2,}+}{\Longrightarrow} R\left(N_{6}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{5}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{4}\right) \\
\stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{3}\right) \stackrel{P_{1 / 2,+}}{\Longrightarrow} R\left(N_{2}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(N_{1}\right) \\
\stackrel{P_{1 / 2}+}{\Longrightarrow} R\left(N_{0}\right) \stackrel{P_{1 / 2,-}}{\Longrightarrow} R\left(H_{1}^{2}\right) \stackrel{P_{+}}{\Longrightarrow} R\left(H_{1}\right)=H_{1}
\end{array}
$$

