Interval Krawczyk and Newton method

February 20, 2007

1 Interval Newton method

In the presentation of the method we follow [A].
Theorem 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Let $X=\Pi_{i=1}^{n}\left[a_{i}, b_{i}\right], a_{i}<b_{i}$. Assume the interval enclosure of $D f(X)$, denoted here by $[D f(X)]$, is invertible. Let $x_{0} \in X$ and we define

$$
\begin{equation*}
N\left(x_{0}, X\right)=-[D f(X)]^{-1} f\left(x_{0}\right)+x_{0} \tag{1}
\end{equation*}
$$

Then
0. if $x_{1}, x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$

1. if $N\left(x_{0}, X\right) \subset X$, then $\exists!x^{*} \in X$ such that $f\left(x^{*}\right)=0$
2. if $x_{1} \in X$ and $f\left(x_{1}\right)=0$, then $x_{1} \in N\left(x_{0}, X\right)$
3. if $N\left(x_{0}, X\right) \cap X=\emptyset$, then $f(x) \neq 0$ for all $x \in X$

Proof We will show first that invertibility of $[D f(X)]$ implies that f is injective on X, which implies assertion $\mathbf{0}$ and the uniqueness part in assertion $\mathbf{1}$. We have for any $x_{0}, x_{1} \in X$
$f\left(x_{1}\right)-f\left(x_{0}\right)=\int_{0}^{1} \frac{d f}{d t} f\left(x_{0}+t\left(x_{1}-x_{0}\right)\right) d t=\int_{0}^{1} \frac{\partial f}{\partial x}\left(x_{0}+t\left(x_{1}-x_{0}\right)\right) d t \cdot\left(x_{1}-x_{0}\right)$
Let us denote by $J\left(x_{1}, x_{0}\right)=\int_{0}^{1} \frac{\partial f}{\partial x}\left(x_{0}+t\left(x_{1}-x_{0}\right)\right) d t$. Obviously $J\left(x_{1}, x_{0}\right) \in$ [$D f(X)$], hence $J\left(x_{1}, x_{0}\right)$ is invertible for any choice of $x_{1}, x_{0} \in X$.

We can rewrite (2) as follows

$$
\begin{equation*}
f\left(x_{1}\right)-f\left(x_{0}\right)=J\left(x_{1}, x_{0}\right)\left(x_{1}-x_{0}\right), \quad \text { for any } x_{0}, x_{1} \in X \tag{3}
\end{equation*}
$$

We are now ready to show that if $f\left(x_{1}\right)=f\left(x_{0}\right)$ and $x_{0}, x_{1} \in X$ then $x_{1}=x_{0}$. From (3) it follows that $J\left(x_{1}, x_{0}\right)\left(x_{1}-x_{0}\right)=0$. Hence from invertibility of $J\left(x_{1}, x_{0}\right)$ it follows that $x_{1}-x_{0}=0$.

We will prove 1 now. Consider the map P

$$
X \ni x \longrightarrow P(x)=-J\left(x, x_{0}\right)^{-1} f\left(x_{0}\right)+x_{0}
$$

From the above considerations it follows that P is well defined. Observe that $P(x) \in N\left(x_{0}, X\right) \subset X$, so $P(X) \subset X$. By the Brouwer theorem it follows that P has a fixed point $x^{*} \in X$.

We show that $f\left(x^{*}\right)=0$. We have

$$
\begin{array}{r}
x^{*}=-J\left(x^{*}, x_{0}\right)^{-1} f\left(x_{0}\right)+x_{0} \\
-f\left(x_{0}\right)=J\left(x^{*}, x_{0}\right)\left(x^{*}-x_{0}\right)=f\left(x^{*}\right)-f\left(x_{0}\right) \\
f\left(x^{*}\right)=0
\end{array}
$$

Redoing the above transformations backwards, shows that each zero of f in X is the fixed point of P, hence must be in $N\left(x_{0}, X\right)$. This proves assertions 2 and 3.

2 Krawczyk method

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1}-function. We would like to solve the equation

$$
\begin{equation*}
F(x)=0 \tag{4}
\end{equation*}
$$

2.1 Motivation, heuristic derivation

We begin by explaining the basic idea of the Krawczyk method. The Newton method is given by

$$
\begin{equation*}
N(x)=x-d F(x)^{-1} F(x) \tag{5}
\end{equation*}
$$

It is well know that if $F\left(x^{*}\right)=0$ and $d F\left(x^{*}\right)$ is nonsingular, then x^{*} is an attracting fixed point for $N(x)$.

It turns out that the same is true if we replace $d F(x)^{-1}$ by a fixed matrix C, which is sufficiently close to $d F\left(x^{*}\right)^{-1}$. The modified Newton operator is given by

$$
\begin{equation*}
N_{m}(x)=x-C F(x) \tag{6}
\end{equation*}
$$

Now let us turn the things around and ask how can we use N_{m} as a way to prove the existence of solution of (4).

This is quite obvious. Namely, if U is homeomorphic to a closed finitedimensional ball and if

$$
\begin{equation*}
N_{m}(U) \subset U \tag{7}
\end{equation*}
$$

then from the Brouwer Theorem it follows, that there exists $x_{0} \in U$ such that $N_{m}\left(x_{0}\right)=x_{0}$. Since C is invertible we obtain that $F\left(x_{0}\right)=0$. To obtain the uniqueness it is enough show that N_{m} is a contraction on U.

Observe that it is impossible to verify in a single interval evaluation of the formula (6), that for some interval set $[x]$ holds $N_{m}([x]) \subset[x]$, because the computed diameter of $[x]-C F[x]$ is greater than or equal to diam $([x])+$ $\operatorname{diam}(C F([x]))$.

It turns out the middle value form of N_{m} can cure this deficiency. If $x_{0} \in[x]$, then

$$
\begin{array}{r}
N_{m}([x]) \subset N_{m}\left(x_{0}\right)+\left[d N_{m}([x])\right]_{I} \cdot\left([x]-x_{0}\right)= \\
x_{0}-C F\left(x_{0}\right)+\left(I d-C[d f([X])]_{I}\right)\left([x]-x_{0}\right)=K\left(x_{0},[x], F\right) .
\end{array}
$$

This explains why the requirement $K\left(x_{0},[x], F\right) \subset[x]$ has something to do with zeros of $F(x)$.

2.2 The Krawczyk method

A method proposed by Krawczyk for finding zero's of F :

- $[x] \subset \mathbb{R}^{n}$ be an interval set (i.e. product of intervals),
- $x_{0} \in[x]$
- $C \in \mathbb{R}^{n \times n}$ be a linear isomorphism

The Krawczyk operator is given by

$$
\begin{equation*}
K\left(x_{0},[x], F\right):=x_{0}-C F\left(x_{0}\right)+\left(I d-C[d F([x])]_{I}\right)\left([x]-x_{0}\right) \tag{8}
\end{equation*}
$$

Theorem 2 1. If $x^{*} \in[x]$ and $F\left(x^{*}\right)=0$, then $x^{*} \in K\left(x_{0},[x], F\right)$.
2. If $K\left(x_{0},[x], F\right) \subset \operatorname{int}[x]$, then there exists in $[x]$ exactly one solution of equation $F(x)=0$.

Proof of 1.

$$
N_{m}\left(x^{*}\right)=x^{*} \in K\left(x_{0},[x]\right) .
$$

Before we prove second assertion we will need several lemmas.
Lemma 3 Assume $f_{0} \in \mathbb{R}^{n}, X, Y \subset \mathbb{R}^{n}, X=-X, Y=-Y$ and X, Y are convex. If

$$
\begin{equation*}
f_{0}+A X \subset Y \tag{9}
\end{equation*}
$$

then $A X \subset Y$.
Proof: Let $x_{1} \in X$. We have

$$
\begin{aligned}
& \\
& f_{0}+A x_{1} \in Y \\
& f_{0}+A\left(-x_{1}\right) \in Y, \quad \Rightarrow \quad A x_{1}-f_{0} \in Y
\end{aligned}
$$

Hence $A x_{1}=\frac{1}{2}\left(A x_{1}+f_{0}\right)+\frac{1}{2}\left(A x_{1}-f_{0}\right) \in Y$.

Lemma 4 Assume $f_{0}, x_{s}, y_{s} \in \mathbb{R}^{n}, X, Y \subset \mathbb{R}^{n}, X=-X, Y=-Y$ and X, Y are convex. If

$$
\begin{equation*}
f_{0}+A\left(x_{s}+X\right) \subset y_{s}+Y \tag{10}
\end{equation*}
$$

then $A X \subset Y$.

Proof: Since

$$
\begin{equation*}
\left(f_{0}+A x_{s}-y_{s}\right)+A X \subset Y \tag{11}
\end{equation*}
$$

and the assertion follows directly from Lemma 3.
Proof of Theorem 2: Since $N_{m}([x]) \subset K\left(x_{0},[x]\right) \subset$ int $[x]$, hence the existence of x^{*} such that $F\left(x^{*}\right)=0$ follows from (6) and the Brouwer Theorem.

We show now that N_{m} is a contraction on $[x]$ in a suitable norm.
Let $A \in I d-C[d F([x])]_{I}$ and $f_{0}=x_{0}-C F\left(x_{0}\right)$. We have

$$
\begin{array}{r}
f_{0}+A\left([x]-x_{0}\right) \subset \operatorname{int}[x] \\
\left(f_{0}-x_{0}\right)+A\left([x]-x_{0}\right) \subset \operatorname{int}\left([x]-x_{0}\right) \tag{13}
\end{array}
$$

Since $[x]-x_{0}$ is a product of intervals, hence there exists $x_{s} \in \mathbb{R}^{n}$ and $X_{s}=$ $\Pi_{i=1}^{n}\left[-z_{i}, z_{i}\right]$, such that

$$
[x]-x_{0}=x_{s}+X_{s} .
$$

Since $X_{s}=-X_{s}$ and X_{s} is convex we can apply Lemma 4 to equation (13) with $Y=x_{s}+\operatorname{int} X_{s}$ to obtain

$$
\begin{equation*}
A X_{s} \subset \operatorname{int} X_{s} . \tag{14}
\end{equation*}
$$

Since the set $I d-C[d F([x])]_{I}$ is compact, then there exists $\alpha<1$ such that

$$
\begin{equation*}
\left(I d-C[d F([x])]_{I}\right) X_{s} \subset \alpha X_{s} . \tag{15}
\end{equation*}
$$

This show that in the norm in which X_{s} is a ball we have

$$
\begin{equation*}
\left|I d-C[d F([x])]_{I}\right| \leq \alpha<1 \tag{16}
\end{equation*}
$$

Hence N_{m} is a contraction on $[x]$ and has at most one fixed point.
If we consider a fixed point problem $x=P(x)$, then the Krawczyk operator is given by

$$
\begin{equation*}
K\left(x_{0},[x], I d-P\right)=x_{0}-C\left(x_{0}-P\left(x_{0}\right)\right)+(I d-C(I d-[d P([x])]))\left([x]-x_{0}\right) \tag{17}
\end{equation*}
$$

and it makes sense to chose $C \approx\left(I d-d P\left(x_{0}\right)\right)^{-1}$.

3 What is better C^{0}-tools or C^{1} for fixed points

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, C^{1}$. Assume that we apparently have $x_{0}, f\left(x_{0}\right)=x_{0}$ and $\operatorname{det}\left(d f\left(x_{0}\right)\right) \neq 0 . x_{0}$ is an isolated fixed point.

Generally C^{1} tools are easier to apply and in fact they are faster.
Advantages and disadvantages of C^{0}-methods(Brouwer Thm, Miranda Thm, covering relations)

+ require C^{0} computation
- conditions to check differ depend on the dynamical type of x_{0}, this may result in the need of multiple computations
- the set on which the conditions are checked has to be carefully chosen (based on the diagonalization of $d f\left(x_{0}\right)$)

Advantages and disadvantages of C^{1}-methods(interval Newton method, Krawczyk method)

- require C^{1} computation, but for ODEs this almost as fast as C^{0}-computations (use C^{1}-Lohner algorithm)
+ conditions to check differ do not depend on the dynamical type of x_{0}
+ as the test sets we can always chose a small box around numerical approximation of x_{0}

4 Continuous families of solutions

Kapela, Simo
Periodic orbits for ODEs in the presence of first integrals
Theorem 5 Let $X \subset \mathbb{R}^{k+m}$ and $\left(z_{0}, c_{0}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{m}$. Let $G: X \rightarrow \mathbb{R}^{m+k}$ and $J: X \rightarrow \mathbb{R}^{m}$ be C^{1} functions, such that

$$
\pi_{z} G\left(z_{0}, c_{0}\right)=z_{0}, \quad J\left(z_{0}, c_{0}\right)=J\left(G\left(z_{0}, c_{0}\right)\right)
$$

Let $Z \subset \mathbb{R}^{k}$ and $C \subset \mathbb{R}^{m}$ be interval sets such that

$$
z_{0} \in Z, \quad c_{0} \in C, \quad\left[\pi_{c}\left(G\left(Z, c_{0}\right)\right)\right] \subset C
$$

Then if the interval matrix $\left[\frac{\partial J}{\partial c}(Z, C)\right]$ is invertible, then $G\left(z_{0}, c_{0}\right)=\left(z_{0}, c_{0}\right)$

References

[A] G. Alefeld Inclusion methods for systems of nonlinear equations - the interval Newton method and modifications. in Topics in Validated Computations J. Herzberger (Editor), 1994 Elsevier Science B.V.
[Mo] R.E. Moore, Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966
[N] A. Neumeier, Interval methods for systems of equations. Cambridge University Press, 1990

