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1 Interval Newton method

In the presentation of the method we follow [A].

Theorem 1 Let f : Rn → Rn be a C1 function. Let X = Πn
i=1[ai, bi], ai < bi.

Assume the interval enclosure of Df(X), denoted here by [Df(X)], is invertible.
Let x0 ∈ X and we define

N(x0, X) = −[Df(X)]−1f(x0) + x0 (1)

Then

0. if x1, x2 ∈ X and f(x1) = f(x2), then x1 = x2

1. if N(x0, X) ⊂ X, then ∃!x∗ ∈ X such that f(x∗) = 0

2. if x1 ∈ X and f(x1) = 0, then x1 ∈ N(x0, X)

3. if N(x0, X) ∩X = ∅, then f(x) 6= 0 for all x ∈ X

Proof We will show first that invertibility of [Df(X)] implies that f is injective
on X, which implies assertion 0 and the uniqueness part in assertion 1. We
have for any x0, x1 ∈ X

f(x1)−f(x0) =
∫ 1

0

df

dt
f(x0+t(x1−x0))dt =

∫ 1

0

∂f

∂x
(x0+t(x1−x0))dt·(x1−x0)

(2)
Let us denote by J(x1, x0) =

∫ 1

0
∂f
∂x (x0 + t(x1 − x0))dt. Obviously J(x1, x0) ∈

[Df(X)], hence J(x1, x0) is invertible for any choice of x1, x0 ∈ X.
We can rewrite (2) as follows

f(x1)− f(x0) = J(x1, x0)(x1 − x0), for any x0, x1 ∈ X (3)

We are now ready to show that if f(x1) = f(x0) and x0, x1 ∈ X then x1 = x0.
From (3) it follows that J(x1, x0)(x1 − x0) = 0. Hence from invertibility of
J(x1, x0) it follows that x1 − x0 = 0.

We will prove 1 now. Consider the map P

X 3 x −→ P (x) = −J(x, x0)−1f(x0) + x0

From the above considerations it follows that P is well defined. Observe that
P (x) ∈ N(x0, X) ⊂ X, so P (X) ⊂ X. By the Brouwer theorem it follows that
P has a fixed point x∗ ∈ X.
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We show that f(x∗) = 0. We have

x∗ = −J(x∗, x0)−1f(x0) + x0

−f(x0) = J(x∗, x0)(x∗ − x0) = f(x∗)− f(x0)
f(x∗) = 0

Redoing the above transformations backwards, shows that each zero of f in X
is the fixed point of P , hence must be in N(x0, X). This proves assertions 2
and 3.

2 Krawczyk method

Let F : Rn → Rn be a C1-function. We would like to solve the equation

F (x) = 0 (4)

2.1 Motivation, heuristic derivation

We begin by explaining the basic idea of the Krawczyk method. The Newton
method is given by

N(x) = x− dF (x)−1F (x). (5)

It is well know that if F (x∗) = 0 and dF (x∗) is nonsingular, then x∗ is an
attracting fixed point for N(x).

It turns out that the same is true if we replace dF (x)−1 by a fixed matrix C,
which is sufficiently close to dF (x∗)−1. The modified Newton operator is given
by

Nm(x) = x− CF (x). (6)

Now let us turn the things around and ask how can we use Nm as a way to
prove the existence of solution of (4).

This is quite obvious. Namely, if U is homeomorphic to a closed finite-
dimensional ball and if

Nm(U) ⊂ U, (7)

then from the Brouwer Theorem it follows, that there exists x0 ∈ U such that
Nm(x0) = x0. Since C is invertible we obtain that F (x0) = 0. To obtain the
uniqueness it is enough show that Nm is a contraction on U .

Observe that it is impossible to verify in a single interval evaluation of the
formula (6), that for some interval set [x] holds Nm([x]) ⊂ [x], because the
computed diameter of [x] − CF [x] is greater than or equal to diam ([x]) +
diam (CF ([x])).

It turns out the middle value form of Nm can cure this deficiency. If x0 ∈ [x],
then

Nm([x]) ⊂ Nm(x0) + [dNm([x])]I · ([x]− x0) =
x0 − CF (x0) + (Id− C[df([X])]I)([x]− x0) = K(x0, [x], F ).
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This explains why the requirement K(x0, [x], F ) ⊂ [x] has something to do with
zeros of F (x).

2.2 The Krawczyk method

A method proposed by Krawczyk for finding zero’s of F :

• [x] ⊂ Rn be an interval set (i.e. product of intervals),

• x0 ∈ [x]

• C ∈ Rn×n be a linear isomorphism

The Krawczyk operator is given by

K(x0, [x], F ) := x0 − CF (x0) + (Id− C [dF ([x])]I)([x]− x0). (8)

Theorem 2 1. If x∗ ∈ [x] and F (x∗) = 0, then x∗ ∈ K(x0, [x], F ).

2. If K(x0, [x], F ) ⊂ int [x], then there exists in [x] exactly one solution of
equation F (x) = 0.

Proof of 1.

Nm(x∗) = x∗ ∈ K(x0, [x]).

Before we prove second assertion we will need several lemmas.

Lemma 3 Assume f0 ∈ Rn, X,Y ⊂ Rn, X = −X, Y = −Y and X,Y are
convex. If

f0 + AX ⊂ Y, (9)

then AX ⊂ Y .

Proof: Let x1 ∈ X. We have

f0 + Ax1 ∈ Y,

f0 + A(−x1) ∈ Y, ⇒ Ax1 − f0 ∈ Y.

Hence Ax1 = 1
2 (Ax1 + f0) + 1

2 (Ax1 − f0) ∈ Y .

Lemma 4 Assume f0, xs, ys ∈ Rn, X, Y ⊂ Rn, X = −X, Y = −Y and X, Y
are convex. If

f0 + A(xs + X) ⊂ ys + Y, (10)

then AX ⊂ Y .
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Proof: Since
(f0 + Axs − ys) + AX ⊂ Y, (11)

and the assertion follows directly from Lemma 3.

Proof of Theorem 2: Since Nm([x]) ⊂ K(x0, [x]) ⊂ int [x], hence the existence
of x∗ such that F (x∗) = 0 follows from (6) and the Brouwer Theorem.

We show now that Nm is a contraction on [x] in a suitable norm.
Let A ∈ Id− C[dF ([x])]I and f0 = x0 − CF (x0). We have

f0 + A([x]− x0) ⊂ int [x] (12)
(f0 − x0) + A([x]− x0) ⊂ int ([x]− x0) (13)

Since [x] − x0 is a product of intervals, hence there exists xs ∈ Rn and Xs =
Πn

i=1[−zi, zi], such that
[x]− x0 = xs + Xs.

Since Xs = −Xs and Xs is convex we can apply Lemma 4 to equation (13) with
Y = xs + intXs to obtain

AXs ⊂ intXs. (14)

Since the set Id− C[dF ([x])]I is compact, then there exists α < 1 such that

(Id− C[dF ([x])]I)Xs ⊂ αXs. (15)

This show that in the norm in which Xs is a ball we have

|Id− C[dF ([x])]I | ≤ α < 1. (16)

Hence Nm is a contraction on [x] and has at most one fixed point.

If we consider a fixed point problem x = P (x), then the Krawczyk operator
is given by

K(x0, [x], Id−P ) = x0−C(x0−P (x0))+(Id−C(Id−[dP ([x])]))([x]−x0) (17)

and it makes sense to chose C ≈ (Id− dP (x0))−1.
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3 What is better C0-tools or C1 for fixed points

f : Rn → Rn, C1. Assume that we apparently have x0, f(x0) = x0 and
det(df(x0)) 6= 0. x0 is an isolated fixed point.

Generally C1 tools are easier to apply and in fact they are faster.
Advantages and disadvantages of C0-methods(Brouwer Thm, Miranda

Thm, covering relations)

+ require C0 computation

- conditions to check differ depend on the dynamical type of x0 , this may
result in the need of multiple computations

- the set on which the conditions are checked has to be carefully chosen
(based on the diagonalization of df(x0))

Advantages and disadvantages of C1-methods(interval Newton method,
Krawczyk method)

- require C1 computation, but for ODEs this almost as fast as C0-computations
(use C1-Lohner algorithm)

+ conditions to check differ do not depend on the dynamical type of x0

+ as the test sets we can always chose a small box around numerical approx-
imation of x0
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4 Continuous families of solutions

Kapela, Simo
Periodic orbits for ODEs in the presence of first integrals

Theorem 5 Let X ⊂ Rk+m and (z0, c0) ∈ Rk × Rm. Let G : X → Rm+k and
J : X → Rm be C1 functions, such that

πzG(z0, c0) = z0, J(z0, c0) = J(G(z0, c0)).

Let Z ⊂ Rk and C ⊂ Rm be interval sets such that

z0 ∈ Z, c0 ∈ C, [πc(G(Z, c0))] ⊂ C.

Then if the interval matrix
[

∂J
∂c (Z, C)

]
is invertible, then G(z0, c0) = (z0, c0)
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