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1 Interval Newton method
In the presentation of the method we follow [A].

Theorem 1 Let f:R™ — R" be a C' function. Let X =TI, [a;,b;], a; < b;.
Assume the interval enclosure of D f(X), denoted here by [D f(X)], is invertible.
Let x¢g € X and we define

N(zo, X) = =[Df(X)] ™" f(0) + 20 (1)
Then
0. if x1,22 € X and f(x1) = f(x2), then x1 = 22
1. if N(zmo,X) C X, then z* € X such that f(z*) =0
2. if 1 € X and f(x1) =0, then x1 € N(xg,X)
3. if N(zo,X)NX =0, then f(z) #0 for all z € X

Proof We will show first that invertibility of [D f(X)] implies that f is injective
on X, which implies assertion 0 and the uniqueness part in assertion 1. We
have for any xg,x7 € X

L 1

0 %f($0+t($1*170))dt: 0 %(%th(l"l*xo»dt'(xl*xo)
(2)
19f

Let us denote by J(z1,70) = [, 55 (w0 + t(z1 — m0))dt. Obviously J(z1,70) €
[Df(X)], hence J(z1, o) is invertible for any choice of z1,z¢ € X.
We can rewrite (2) as follows

f(x1) = f(wo) =

flxy) = f(xo) = J(x1,20) (21 — 20), fOr any xg,z; € X (3)

We are now ready to show that if f(x1) = f(x¢) and 2o, 21 € X then z1 = xp.
From (3) it follows that J(z1,x0)(x1 — xp) = 0. Hence from invertibility of
J(x1,20) it follows that 1 —z¢ = 0.

We will prove 1 now. Consider the map P

X 32— P(z) = —J(x,20) " f(w0) + z0

From the above considerations it follows that P is well defined. Observe that
P(z) € N(z9,X) C X, so P(X) C X. By the Brouwer theorem it follows that
P has a fixed point z* € X.



We show that f(z*) = 0. We have

x* = —J(x*, 20) "  f(w0) + 20
—flzo) = J(@", o) (2" — m0) = f(27) — f (o)
f@@®) =0

Redoing the above transformations backwards, shows that each zero of f in X
is the fixed point of P, hence must be in N(xo, X). This proves assertions 2
and 3. '

2 Krawczyk method
Let F : R® — R" be a C''-function. We would like to solve the equation

F(z)=0 (4)

2.1 Motivation, heuristic derivation

We begin by explaining the basic idea of the Krawczyk method. The Newton
method is given by
N(z) =z — dF(z) ' F(z). (5)

It is well know that if F(2*) = 0 and dF(z*) is nonsingular, then z* is an
attracting fixed point for N(z).

It turns out that the same is true if we replace dF(x)~! by a fixed matrix C,
which is sufficiently close to dF(z*)~!. The modified Newton operator is given
by

Np(z) =2 — CF(x). (6)

Now let us turn the things around and ask how can we use N, as a way to
prove the existence of solution of (4).
This is quite obvious. Namely, if U is homeomorphic to a closed finite-
dimensional ball and if
Nm(U) C U, (7)

then from the Brouwer Theorem it follows, that there exists xg € U such that
Ny (o) = xo. Since C is invertible we obtain that F'(zg) = 0. To obtain the
uniqueness it is enough show that N, is a contraction on U.

Observe that it is impossible to verify in a single interval evaluation of the
formula (6), that for some interval set [z] holds N,,([z]) C [z], because the
computed diameter of [z] — CF[z] is greater than or equal to diam ([z]) +
diam (CF([z])).

It turns out the middle value form of N, can cure this deficiency. If z¢ € [z],
then

Nin([2]) C Nin(20) + [dNm ([2])]1 - ([2] = z0) =
2o — CF(xo) + (Id = Cldf ([XD1)([2] — o) = K(xo, [2], F).



This explains why the requirement K (xo, [z], F) C [x] has something to do with
zeros of F(x).

2.2 The Krawczyk method

A method proposed by Krawczyk for finding zero’s of F:
e [z] C R™ be an interval set (i.e. product of intervals),
® 1 € ]
e C € R"™ ™ be a linear isomorphism

The Krawczyk operator is given by
K (o, [2], ') := 2o — CF(x0) + (Id — C'[dF ([z])] ;)([#] — o). (8)
Theorem 2 1. If z* € [z] and F(x*) =0, then x* € K(xo, [z], F).

2. If K(xo,[z],F) C int[z], then there exists in [z] ezactly one solution of
equation F'(z) = 0.

Proof of 1.

Np(z*) = 2™ € K(xo, [z]).

Before we prove second assertion we will need several lemmas.

Lemma 3 Assume fp € R?, XY C R", X = —X,Y = -Y and X,Y are
convex. If

fot+t AX CY, (9)
then A X CY.
Proof: Let z; € X. We have

fo+ Az, €,
fot A(—x1) €Y, = Axy — fo €Y.

Hence Az; = %(Aa:l + fo)+ %(Awl —fo) €Y. ]
Lemma 4 Assume fy,zs,ys € R", X, Y CR", X = -X,Y =-Y and X, Y

are convex. If
Jo+ Alzs + X) Cys +Y, (10)

then AX CY.



Proof: Since
(fO+Ams_ys)+AXCYa (11)

and the assertion follows directly from Lemma 3. ]

Proof of Theorem 2: Since N, ([z]) C K(zo, [x]) C int [x], hence the existence
of z* such that F'(z*) = 0 follows from (6) and the Brouwer Theorem.

We show now that N,, is a contraction on [z] in a suitable norm.

Let A € Id — C[dF ([z])]; and fo = 29 — CF(x0). We have

fo+ A([z] — o) C int [z] (12)
(fo — z0) + A([x] — x0) Cint ([z] — z0) (13)

Since [x] — xo is a product of intervals, hence there exists z, € R™ and X, =
M7, [—#, 2i], such that
[2] — 20 = x5 + X,.

Since X5 = — X, and X is convex we can apply Lemma 4 to equation (13) with
Y =z, + int X, to obtain
AX, Cint X;. (14)

Since the set Id — C[dF([x])]r is compact, then there exists o < 1 such that
(Id — CldF([z])]1)Xs C aX,. (15)
This show that in the norm in which X is a ball we have
[1d — ClaF(le]))i] < a < 1. (16)

Hence N,, is a contraction on [z] and has at most one fixed point. ]

If we consider a fixed point problem z = P(z), then the Krawczyk operator
is given by

K(xo, [z], Id—=P) = 20— C(z0— P(x0)) + (Id— C(Id—[dP([])]))([x] = z0) (17)

and it makes sense to chose C' ~ (Id — dP(z))~'.



3 What is better C’-tools or C' for fixed points

f:R* - R" (C!'. Assume that we apparently have xq, f(zo) = zo and
det(df (xo)) # 0. xg is an isolated fixed point.
Generally C* tools are easier to apply and in fact they are faster.
Advantages and disadvantages of C’-methods(Brouwer Thm, Miranda
Thm, covering relations)

+ require C° computation

- conditions to check differ depend on the dynamical type of g , this may
result in the need of multiple computations

- the set on which the conditions are checked has to be carefully chosen
(based on the diagonalization of df (z¢))

Advantages and disadvantages of C!'-methods(interval Newton method,
Krawczyk method)

- require C'' computation, but for ODEs this almost as fast as C?-computations
(use C''-Lohner algorithm)

+ conditions to check differ do not depend on the dynamical type of xg

+ as the test sets we can always chose a small box around numerical approx-
imation of xg



4 Continuous families of solutions

Kapela, Simo
Periodic orbits for ODEs in the presence of first integrals

Theorem 5 Let X C RF*™ and (z9,cp) € R¥ x R™. Let G : X — R™* and
J: X = R™ be C' functions, such that

7TZG(207CQ) = 20, J(Zo,Co) = J(G(Zo,CO)).
Let Z C RF and C C R™ be interval sets such that
20 €7, co€C, [m(G(Z, cp))]CC.

Then if the interval matric [g—‘cj(z C)] is invertible, then G(zo,co) = (20, o)
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