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Abstract

We show how to effectively link covering relations with cone conditions.
We give a new, ’dynamical’, proof of the stable manifold theorem.

1 Introduction

2 Notation

By N, Z, Q, R, C we denote the set of natural, integer, rational, real and
complex numbers, respectively. Z− and Z+ are negative and positive integers,
respectively. By S1 we will denote a unit circle on the complex plane.

For Rn we will denote the norm of x by ‖x‖ and if the formula for the norm
is not specified in some context, then it means that it is ok to use any norm
there. Let x0 ∈ Rs, then Bs(x0, r) = {z ∈ R2 | ‖x0 − z‖ < r} and Bs = B(0, 1).

For z ∈ Ru × Rs we will call usually the first coordinate, x, and the second
one y. Hence z = (x, y), where x ∈ Ru and y ∈ Rs. We will use the projection
maps π1(z) = πx(z) = x(z) = x and π2(z) = πy(z) = y(z) = y.

Let z ∈ Rn and U ⊂ Rn be a compact set and f : U → Rn be continuous
map, such that z /∈ f(∂U). Then the local Brouwer degree [S] of f on U at z is
defined and will be denoted by deg(f, U, z).

Let A : Rn → Rn be a linear map. By Sp(A) we denote the spectrum of A,
which is the set of λ ∈ C, such that there exists x 6= 0, such that Ax = λx.

3 Covering relations, horizontal and vertical disks

Definition 1 [GiZ, Definition 1] An h-set, N , is a quadruple (|N |, u(N), s(N), cN )
such that

• |N | is a compact subset of Rn

• u(N), s(N) ∈ {0, 1, 2, . . . } are such that u(N) + s(N) = n

• cN : Rn → Rn = Ru(N) × Rs(N) is a homeomorphism such that

cN (|N |) = Bu(N) ×Bs(N).
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We set

dim(N) := n,

Nc := Bu(N) ×Bs(N),

N−
c := ∂Bu(N) ×Bs(N),

N+
c := Bu(N) × ∂Bs(N),

N− := c−1
N (N−

c ), N+ = c−1
N (N+

c ).

Hence an h-set, N , is a product of two closed balls in some coordinate system.
The numbers u(N) and s(N) are called the nominally unstable and nominally
stable dimensions, respectively. The subscript c refers to the new coordinates
given by homeomorphism cN . Observe that if u(N) = 0, then N− = ∅ and if
s(N) = 0, then N+ = ∅. In the sequel to make notation less cumbersome we
will often drop the bars in the symbol |N | and we will use N to denote both
the h-sets and its support.

Definition 2 [GiZ, Definition 3] Let N be a h-set. We define a h-set NT as
follows

• |NT | = |N |
• u(NT ) = s(N), s(NT ) = u(N)

• We define a homeomorphism cNT : Rn → Rn = Ru(NT ) × Rs(NT ), by

cNT (x) = j(cN (x)),

where j : Ru(N) × Rs(N) → Rs(N) × Ru(N) is given by j(p, q) = (q, p).

Observe that NT,+ = N− and NT,− = N+. This operation is useful in the
context of inverse maps.

Definition 3 [W2, Definition 2.2] Assume that N, M are h-sets, such that
u(N) = u(M) = u and let f : N → Rdim(M) be continuous. Let fc = cM◦f◦c−1

N :
Nc → Ru × Rs(M).

Let w be a nonzero integer. We say that

N
f,w
=⇒ M

(N f -covers M with degree w) iff the following conditions are satisfied

1. there exists a continuous homotopy h : [0, 1]×Nc → Ru × Rs, such that the
following conditions hold true

h0 = fc, (1)
h([0, 1], N−

c ) ∩Mc = ∅, (2)
h([0, 1], Nc) ∩M+

c = ∅. (3)
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2. If u > 0, then there exists a map A : Ru → Ru, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (4)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (5)

Moreover, we require that

deg(A,Bu(0, 1), 0) = w, (6)

Observe that in the above definition s(N) and s(M) can be different, this is the
only difference compared to [GiZ, Definition 6].

Remark 1 Observe, that since for any norm in Rn the closed unit ball is home-
omorphic to [−1, 1]n, therefore for h-sets and covering relations we will use
different norms in different contexts.

Remark 2 If the map A in condition 2 of Def. 3 is a linear map, then condition
(5) implies, that

deg(A, Bu(0, 1), 0) = ±1.

Hence condition (6) is in this situation automatically fulfilled with w = ±1.
In fact, this is the most common situation in the applications of covering

relations.

Most of the time we will not interested in the value of w in the symbol
N

f,w
=⇒ M and we will often drop it and write N

f
=⇒ M , instead. Sometimes

we may even drop the symbol f and write N =⇒ M .

Definition 4 [GiZ, Definition 7] Assume N, M are h-sets, such that u(N) =
u(M) = u and s(N) = s(M) = s. Let g : Rn ⊃ Ω → Rn. Assume that
g−1 : |M | → Rn is well defined and continuous. We say that N

g⇐= M (N

g-backcovers M ) iff MT g−1

=⇒ NT .

Definition 5 [WZ, Definition 10] Let N be an h-set. Let b : Bu(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a horizontal disk in N if there
exists a homotopy h : [0, 1]×Bu(N) → Nc, such that

h0 = bc (7)
h1(x) = (x, 0), for all x ∈ Bu(N) (8)

h(t, x) ∈ N−
c , for all t ∈ [0, 1] and x ∈ ∂Bu(N) (9)

Definition 6 [WZ, Definition 11] Let N be an h-set. Let b : Bs(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a vertical disk in N if there
exists a homotopy h : [0, 1]×Bs(N) → Nc, such that

h0 = bc

h1(x) = (0, x), for all x ∈ Bs(N)

h(t, x) ∈ N+
c , for all t ∈ [0, 1] and x ∈ ∂Bs(N). (10)
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Definition 7 Let N be an h-set in Rn and b be a horizontal (vertical) disk in
N .
We will say that x ∈ Rn belongs to b, when b(z) = x for some z ∈ dom(b).

By |b| we will denote the image of b. Hence z ∈ |b| iff z belongs to b.

The theorem below contains a slight generalization of Theorem 9 in [GiZ]

Theorem 3 Assume Ni, i = 0, . . . , k, Nk = N0 are h-sets and for each i =
1, . . . , k we have

Ni−1
fi,wi=⇒ Ni. (11)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (12)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x (13)

Proof: Under additional assumption that s(Ni) = s for i = 1, . . . , k this theo-
rem was proved in [GiZ].

The situation of different s(Ni) can be reduced to the previous one as follows.
Let s = maxi=1,...,k−1 si.

Let us fix the norm ‖x‖ = maxi |xi|.
We define new h-sets Ñi and maps f̃i as follows

|Ñi| = |Ni| × [−1, 1]s−si , u(Ñi) = u(Ni), s(Ñi) = s (14)
cÑi

(x, y, ỹ) = (cNi(x, y), ỹ), where (x, y) ∈ Rdim(Ni), ỹ ∈ Rs−si (15)

Let hi be the homotopy from the covering relation Ni−1
fi=⇒ Ni. We define

a new homotopy h̃i and f̃i by

h̃i(t, (x, y, ỹi−1)) = hi(t, (x, y))× {0}s−s(Ni)

f̃i(x, y, ỹi−1) = fi(x, y)× {0}s−s(Ni)

Observe that for i = 1, . . . , k we have

Ñi−1
f̃i,wi=⇒ Ñi (16)

The assertion now follows from Theorem 9 in [GiZ].

Theorem 4 Let k ≥ 1. Assume Ni, i = 0, . . . , k, are h-sets and for each
i = 1, . . . , k we have

Ni−1
fi,wi=⇒ Ni (17)

Assume that b0 is a horizontal disk in N0 and be is a vertical disk in Nk.
Then there exists a point x ∈ intN0, such that

x = b0(t), for some t ∈ Bu(N0)(0, 1) (18)
fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (19)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = be(z), for some z ∈ Bs(Nk)(0, 1) (20)
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Proof: Just as in the case of Theorem 3, the assertion was proved in [WZ,
Thm. 4] under the assumption that s(Ni) = s is independent of i.

We can reduce the current case exactly in the same way as in the proof of
Theorem 3. We define f̃i and Ñi as it was done there. For disks let h0 and
he be the homotopies from definitions of b0 and be, respectively. We define the
horizontal disk b̃0 and the vertical disk b̃e and their homotopies h̃0 and h̃e as
follows

dom(b̃0) = dom(b0), b̃0(x) = b0(x)× {0}s−s(N0)

h̃0(t, x) = h(t, x)× {0}s−s(N0)

dom(b̃e) = dom(be)× [−1, 1]s−s(Nk), b̃e(y, ỹ) = (be(y), ỹ),
h̃e(t, y, ỹ) = (he(y), ỹ).

Now we apply Theorem 4 from [WZ].

4 Cone conditions

The goal of this section is to introduce a method, which will allow to handle
relatively easily the hyperbolic structure on h-sets.

Definition 8 Let N ⊂ Rn be an h-set and Q : Rn → R be a quadratic form

Q((x, y)) = α(x)− β(y), (x, y) ∈ Ru(N) × Rs(N), (21)

where α : Ru(N) → R, and β : Rs(N) → R are positive definite quadratic forms.
The pair (N,Q) we be called an h-set with cones.

Quite often we will drop Q in the symbol (N, Q) and we will say that N is
an h-set with cones.

4.1 Cone conditions for horizontal and vertical disks

Definition 9 Let (N, Q) be a h-set with cones.
Let b : Bu → |N | be a horizontal disk.
We will say that b satisfies the cone condition (with respect to Q ) iff for

any x1, x2 ∈ Bu, x1 6= x2 holds

Q(bc(x1)− bc(x2)) > 0. (22)

Definition 10 Let (N,Q) be a h-set with cones.
Let b : Bs → |N | be a vertical disk.
We will say that b satisfies the cone condition (with respect to Q ) iff for

any y1, y2 ∈ Bs, y1 6= y2 holds

Q(bc(y1)− bc(y2)) < 0. (23)
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Lemma 5 Let (N,Q) be a h-set with cones and let b : Bu → |N | be a horizontal
disk satisfying the cone condition.

Then there exists a Lipschitz function y : Bu → Bs such that

bc(x) = (x, y(x)). (24)

Analogously, if b : Bs → |N | is a vertical disk satisfying the cone condition,
then there exists a Lipschitz function x : Bs → Bu

bc(y) = (x(y), y)). (25)

Proof: We will prove only the first assertion, the proof of the other one is
analogous.

In the first part of this proof we will show that for any x ∈ intBu(N) there
exists z ∈ intBu(N) and yx ∈ Bs(N), such that

bc(z) = (x, yx). (26)

For this we will use the local Brouwer degree.
In the second part using the cone condition we will show that yx is uniquely

defined and its dependence on x is Lipschitz. Then we extend the definition of
y(x) to x ∈ ∂Bu.

Let h be the homotopy from the definition of the horizontal disk b.
To prove (26) consider the homotopy π1 ◦ h : [0, 1]×Bu(N) → Bu(N), where

π1 : Ru(N) × Rs(N) → Ru(N) is a projection on the first component. Let us fix
x ∈ intBu(N). It is easy to see that, since x /∈ π1 ◦ h(t, ∂Bu(N) the local Brower
degrees in the formula below are defined and the stated equalities are satisfied
by the homotopy property

deg(π1 ◦ bc, Bu(N), x) = deg(π1 ◦ h1, Bu(N), x) = deg(Id, Bu(N), x) = 1. (27)

This proves (26).
To prove the uniqueness of yx, assume that there exists z1, z2 ∈ intBu(N)

and y1, y2 ∈ Bs(N), y1 6= y2 such that

bc(z1) = (x, y1), bc(z2) = (x, y2). (28)

From the cone condition for b it follows that

0 < Q(bc(z1)− bc(z2)) = α(0)− β(y1 − y2) < 0 (29)

which is a contradiction. Hence we have a well defined function

y(x) = yx, for x ∈ intBu(N). (30)

Observe that from the cone condition it follows that for any x1, x2 ∈ intBu(N),
x1 6= x2 holds

A‖x1 − x2‖2 ≥ α(x1 − x2) > β(y(x1)− y(x2)) ≥ B‖y(x1)− y(x2)‖2, (31)
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where A,B are some positive constants related to quadratic forms α and β,
respectively.

This proves the Lipschitz condition.
It is easy to see that the function y(x) can be extended also to the boundary

of Bu(N). Observe that from the closeness of |b| it follows that (x, y(x)) ∈ |b|
for x ∈ ∂Bu(N).

4.2 Cone conditions for maps

Definition 11 Assume that (N, QN ), (M, QM ) are h-sets with cones, such that
u(N) = u(M) = u and let f : N → Rdim(M) be continuous. Assume that

N
f

=⇒ M . We say that f satisfies the cone condition (with respect to the pair
(N, M)) iff for any x1, x2 ∈ Nc, x1 6= x2 holds

QM (fc(x1)− fc(x2)) > QN (x1 − x2). (32)

The basic theorem relating covering relations and cone conditions is

Theorem 6 Assume that

N0
f0=⇒ N1

f1=⇒ N2
f2=⇒ · · · fk−1=⇒ Nk, (33)

where all h-sets are h-sets with cones and fi for i = 0, . . . , k − 1 satisfies the
cone condition.

Assume that b : Bs(Nk) → Nk is a vertical disk in Nk satisfying the cone
condition.

Then the set of points z ∈ N0 satisfying the following two conditions

fi−1 ◦ fi−2 ◦ · · · ◦ f0(z) ∈ Ni, for i = 1, . . . , k (34)
fk−1 ◦ · · · ◦ f0(z) ∈ |b| (35)

is a vertical disk satisfying the cone condition.

Proof: For the proof it is enough to consider the case of k = 1, only. For k > 1
the result follows by induction.

Without any loss of the generality we can assume that N0 = N0,c = Bu(N0)×
Bs(N0), N1 = N1,c = Bu(N1)×Bs(N1), f0 = f0,c. Consider a family of horizontal
disks in N0 dy : Bu(N0) → N0 for y ∈ Bs(N0)

dy(x) = (x, y). (36)

From Theorem 4, applied to chain N0
f0=⇒ N1 and disks dy in N0 and b in N1

it follows that each y ∈ Bs(N0) there exists x ∈ Bu(N0), such that

f0(x, y) ∈ |b| (37)

Let us fix y ∈ Bs(N0). We will show that there exists only one x satisfying
(37). For the proof assume the contrary, hence we have x1 6= x2 and x1, x2 both
satisfy (37).
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Observe that QN0((x1, y)− (x2, y)) > 0, hence from the fact that f0 satisfies
the cone condition it follows that

QN1(f0(x1, y)− f0(x2, y))) > 0. (38)

But the above inequality is in a contradiction with the cone condition for b.
Hence (37) defines a function x(y) in a unique way.

It is easy to see that function x(y) is continuous. Namely, from the compact-
ness argument it follows that it is enough to prove that if we have a sequence
of pairs (xn, yn), where yn ∈ Bs, yn → ȳ for n → ∞ and xn = x(yn), xn → x̄,
then f0(x̄, ȳ) ∈ |b|, but this is an obvious consequence of the continuity of f0

and the compactness of |b|.
Obviously, b0 : Bs → Bu × Bs defined by b0(y) = (x(y), y) is a vertical disk

in N0. It remains to show that it satisfies the cone condition.
We will prove this by a contradiction. Assume that we have y1 and y2 such

that
QN0((x(y1), y1)− (x(y2), y2)) ≥ 0, (39)

then
QN1(f0(x(y1), y1)− f0(x(y2), y2)) > 0, (40)

hence the points f0(x(y1), y1) and f0(x(y2), y2) cannot both belong to b, because
the cone condition is violated.

4.3 Rigorous numerical verification of cone conditions

Assume that (N,QN ) and (M, QM ) are h-sets with cones and a map f : N →
Rdim(M) is C1.

Observe that for x2 → x1

QM (f(x2)− f(x1))−QN (x2 − x1) → 0. (41)

Hence there is no chance that the cone condition can be verified rigorously on
computer [N, KWZ], by direct evaluation in interval arithmetics of QM (f(x2)−
f(x1))−QN (x2 − x1).

Our intention is to give a condition, which will imply the cone condition and
will be verifiable on computer.

Definition 12 Let U ⊂ Rn and let g : U → Rn be a C1 map. The we define
the interval enclosure of Dg(U) by

[Dg(U)] =
{

A ∈ Rn×n | ∀ijAij ∈
[

inf
x∈U

∂gi

∂xj
(x), sup

x∈U

∂gi

∂xj
(x)

]}
(42)

Let [dfc(Nc)] be the interval enclosure of dfc on Nc. Observe that when
dim(M) 6= dim(N) this is not a square matrix.
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Lemma 7 Assume that for any B ∈ [dfc(Nc)], the quadratic form

V (x) = QM (Bx)−QN (x) (43)

is positive definite, then for any x1, x2 ∈ Nc such that x1 6= x2 holds

QM (fc(x1)− fc(x2)) > QN (x1 − x2). (44)

Proof: Let us fix x1, x2 in Nc. We have

fc(x2)− fc(x1) =
∫ 1

0

dfc(x1 + t(x2 − x1))dt · (x2 − x1). (45)

Let B =
∫ 1

0
dfc(x1 + t(x2 − x1))dt. Obviously B ∈ [dfc]. Hence

fc(x2)− fc(x1) = B(x2 − x1). (46)

We have

QM (fc(x2)− fc(x1))−QN (x2 − x1) =
QM (B(x2 − x1))−QN (x2 − x1) = V (x2 − x1) > 0.

In the light of the above lemma the verification of cone conditions can be
reduced to checking that the interval matrix corresponding to the quadratic
form V for various choices of B ∈ [dfc(Nc)] given by

V = [dfc(Nc)]T QM [dfc(Nc)]−QN (47)

is positive definite.

5 Stable and unstable manifolds for hyperbolic
fixed point of a map

Definition 13 Consider the map f : X → X.
Let x ∈ X. Any sequence {xk}k∈I , where I ⊂ Z is a set containing 0 and

for any l1 < l2 < l3 in Z if l1, l3 ∈ I, then l2 ∈ I, such that

x0 = x, f(xi) = xi+1, for i, i + 1 ∈ I (48)

will be called an orbit through x. If I = Z−, then we will say that {xk}k∈I is a
full backward orbit through x.

Definition 14 Let X be a topological space and let the map f : X → X be
continuous.
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Let Z ⊂ Rn, x0 ∈ Z, Z ⊂ dom(f). We define

W s
Z(z0, f) = {z | ∀n≥0f

n(z) ∈ Z, lim
n→∞

fn(z) = z0}
Wu

Z (z0, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z, such that
lim

n→−∞
xn = z0}

W s(z0, f) = {z | lim
n→∞

fn(z) = z0}
Wu(z0, f) = {z | ∃ {xn} a full backward orbit through z, such that

lim
n→−∞

xn = z0}
Inv+(Z, f) = {z | ∀n≥0f

n(z) ∈ Z}
Inv−(Z, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z }

If f is known from the context, then we will usually drop it and use W s(z0),W s
Z(z0)

etc instead.

The following fact is well know in the Conley index theory (see [M])

Lemma 8 Let X be a topological space and let the map f : X → X be contin-
uous. If Z is compact, then the sets Inv±(Z, f) are compact.

Lemma 9 Let f : Rn → Rn be a continuous map. Assume that z0 is a fixed
point of f .

Assume that there exists an h-set N with cones, such that z0 ∈ N ,

N
f

=⇒ N, (49)

and f satisfies the cone condition with respect to the pair (N,N).
Then

Inv+N = W s
N (z0), (50)

Inv−N = Wu
N (z0). (51)

Proof: To prove (50) it is enough to show that, if fn(z) ∈ N for all n ≥ N,
then limn→∞ fn(z) = z0.

Observe that the function V (z) = Q(z − z0) is a Lapunov function on N ,
i.e. is increasing on orbits in N , therefore there is a unique fixed point of f
in N . Hence fn(z)for n → ∞ must converge toward z0. It is easy to see, by
the Lapunov function argument that there is only one fixed point in N . This
finishes the proof of (50).

To prove (51) it is enough to show, that any backward orbit in N , {xk}k∈Z−
converges to z0. But this is true by the same Lapunov function argument as in
the previous paragraph.

Theorem 10 Let f : Rn → Rn be a continuous map. Assume that z0 is a fixed
point of f .
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Assume that there exists an h-set N with cones, such that z0 ∈ N

N
f

=⇒ N, (52)

and f satisfies the cone condition with respect to the pair (N,N).
Then W s

N (z0) is a vertical disk in N satisfying the cone condition.
Therefore, W s

N (z0) can be represented as a graph of a Lipschitz function over
the nominally stable space in N .

Proof: First we show that for all y ∈ Bs there exists x ∈ Bu, such that

z = c−1
N (x, y) ∈ W s

N (z0). (53)

By Lemma 9 it is equivalent to showing that

fn(z) ∈ N, for n ∈ N. (54)

Consider a family of horizontal disks in N dy : Bu(N) → N for y ∈ Bs(N)

dy(x) = (x, y). (55)

Consider an infinite chain of covering relations

N
f

=⇒ N
f

=⇒ N
f

=⇒ · · ·N f
=⇒ · · · (56)

From Theorem 4 applied to dy, bv, an arbitrary vertical disk in N and finite

chains N
f

=⇒ N
f

=⇒ N
f

=⇒ · · ·N of increasing length using the compactness
argument one can show (see [W2, Col. 3.10]) that for every y ∈ Bs there exists
x ∈ Bu, such that (54) holds for z = c−1

N (x, y).
The next step is to prove that such x is unique. Let us assume the contrary,

then there exists y ∈ Bs and x1, x2 ∈ Bu, x1 6= x2, such that zi = c−1
N (xi, y) for

i = 1, 2 satisfies condition (54). Observe that

Q(z1 − z2) = α(x1 − x2) > 0, (57)

hence from the cone condition and (54) it follows that

Q(fn(z1)− fn(z2) > α(x1 − x2), for n ∈ N. (58)

Passing to the limit n →∞ we obtain

0 = Q(z0 − z0) = lim
n→∞

Q(z1(t)− z2(t)) > α(x1 − x2) > 0. (59)

This is a contradiction. Hence we have a well defined function x(y) on Bs.
From the uniqueness of x(y) the continuity of x(y) follows easily. Namely,

from the compactness argument it follows that it is enough to prove that if we
have a sequence of pairs (xn = x(yn), yn), where yn ∈ Bs, yn → ȳ for n → ∞
and xn → x̄, then c−1

N (x̄, ȳ) ∈ Inv+N , but this is an obvious consequence of the
closeness of Inv+N .
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Hence, W s
N (x0) = |b|, where b is a vertical disk in N , given by b(x, y) =

c−1
N (x(y), y). Now we prove the cone condition for this disk.

We have to check whether

QN ((x(y1), y1)− (x(y2), y2)) < 0, for all y1, y2 ∈ Bs, y1 6= y2 (60)

Assume that it does not hold. Then for some z1, z2 ∈ W s
N (x0), z1 6= z2 we have

Q(z1 − z2) ≥ 0. (61)

From the cone condition it follows that

Q(fn(z1)− fn(z2) > Q(f(z1)− f(z2)) > 0, for n > 1. (62)

Passing to the limit n →∞ we obtain

0 = Q(z0 − z0) = lim
n→∞

Q(fn(z1)− fn(z2)) > Q(f(z1)− f(z2)) > 0. (63)

Which is a contradiction. This proves (60).

Theorem 11 Let f : Rn → Rn be a continuous map. Assume that z0 is a fixed
point of f .

Assume that there exists an h-set N with cones, such that z0 ∈ N ,

N
f

=⇒ N, (64)

and f satisfies the cone condition with respect to the pair (N,N).
Then Wu

N (z0) is a horizontal disk in N satisfying the cone condition.
Therefore, Wu

N (z0) can be represented as a graph of a Lipschitz function over
the nominally unstable space in |N |.

Proof: Without any loss of the generality we can assume that N = Bu × Bs

and cN = id.
We will prove that for any x ∈ Bu there exists y ∈ Bs, such that (x, y) ∈

Wu
N (x0). For any x ∈ Bu let vx be a vertical disk given by

vx(y) = (x, y).

Let h : Bu → Bu ×Bs be a horizontal disk given by h(x) = (x, 0).
Consider a chain of covering relations consisting of k replicas of

N
f

=⇒ N . It follows from Theorem 4 it follows that there exists a finite orbit
{wk

−k, wk
−k+1, . . . , w

k
−1, w

k
0}, such that

wk
−k, wk

−k+1, . . . , w
k
−1, w

k
0 ∈ N

f(wk
l ) = wk

l+1, l = −k, . . . ,−1

wk
−k ∈ |h|, wk

0 ∈ |vx|.
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By applying a diagonal argument we can find an infinite backward orbit
{wl}l∈Z−∪{0}, such that

wl ∈ N, l = 0,−1,−2, . . .

f(wl) = wl−1, l < 0
w0 ∈ |vx|.

Since V (z) = QN (z − z0) is increasing on orbits for z 6= z0, therefore

lim
l→−∞

wl = z0. (65)

We have proved that
w0 ∈ Wu

N (z0) ∩ |vx|. (66)

We will prove that w0 in (66) is uniquely defined. Let p0 also satisfies
the above condition, hence there exists a backward orbit in N through p0

{pl}l∈Z−∪{0}. We have

QN (p0 − w0) = −β(y(p0)− y(w0)) < 0. (67)

From the cone condition for map f it follows that the function QN (pl − wl) is
increasing for l < 0, hence

0 > QN (p0 − w0) > QN (pl − wl) > lim
l→−∞

Q(pl − wl) = QN (z0 − z0) = 0. (68)

Which is a contradiction, therefore w0 in (66) is uniquely defined.
We define a horizontal disk d : Bu → Bu ×Bs, by d(x) = (x, w0). From the

above considerations it follows that

Wu
N (z0) = |d|. (69)

We will show that d is satisfy the cone condition

QN (w − p) > 0, for all w, p ∈ |d|, w 6= p. (70)

Assume that (70) does not hold. Then there exists two full backward orbits
{wl}, {pl} in N through w and p and

QN (w − p) ≤ 0. (71)

We have for any l ∈ Z−
0 ≥ QN (w0 − p0) > QN (wl − pl) > lim

l→−∞
QN (wl − pl) = QN (z0 − z0) = 0.

But this is a contradiction, hence (70) is satisfied.

Below we present a theorem about the existence of the unstable and unstable
manifold for hyperbolic fixed points. In our opinion the most interesting fea-
ture, in fact probably the only one, is that the proof uses the arguments from
the dynamics, only. The result, concerning the smoothness, is rather weak,
when compared to classical results in the literature [HPS], as we have only the
Lipschitz condition and a suitable tangency at the fixed point.
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Theorem 12 Let f : Rn → Rn be a C1 local diffeomorphism. Assume that z0

is a hyperbolic fixed point of f (Sp(Df(z0)) ∩ S1 = ∅).
Let Z ⊂ Rn be an open set, such that z0 ∈ Z.
Then there exists an h-set N with cones, such that z0 ∈ intN , N ⊂ Z and

• N
f

=⇒ N , NT f−1

=⇒ NT

• Wu
N (z0) is a horizontal disk in N satisfying the cone condition

• W s
N (z0) is a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) can be represented as a graph of a Lipschitz function

over the unstable space for the linearization of f at z0 and tangent to it at z0.
Analogous statement is also valid for W s

N (z0).

Proof: Let L ba a linearization of f at z0, hence L(z) = z0 + df(z0)(z − z0).
Let u be the dimension of the unstable manifold and s of the stable manifold of
L at z0.

Then there exists a coordinate system on Rn and a scalar product (·, ·) such
that following holds

df(z0) =
[

A 0
0 U

]
, (72)

where A : Ru → Ru and U : Rs → Rs are linear isomorphisms, such that

Wu(z0, L) = {z0}+ Ru × {0}s, W s(z0, L) = {z0}+ {0}u × Rs (73)
‖Ax‖ > ‖x‖, for x ∈ Ru \ {0} (74)
‖Uy‖ < ‖y‖, for y ∈ Rs \ {0}, (75)

where the norms are ‖x‖ =
√

x2 and ‖y‖ =
√

y2. We will use these coordinates
in our proof.

Observe that (74) and (75) imply that matrices AT A − Id and Id − UT U
are positive definite.

For any r > 0 we define

N(r) = {z0}+ Bu(0, r)×Bs(0, r). (76)

We define the homotopy

fλ(z) = (1−λ)f(z)+λ(df(z0)(z−z0)+z0), where λ ∈ [0, 1] and z ∈ Rn. (77)

It is easy to see that f0 = f and f1(x, y) = df(z0)(z − z0) + z0.
Let Q((x, y)) = αx2 − βy2, where x ∈ Ru and y ∈ Rs and α > 0, β > 0 are

arbitrary positive reals.
We will need the following lemma, which will be proved after we complete

the current proof.
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Lemma 13 There exists r0 > 0, such that for any 0 < r ≤ r0 for all z1, z2 ∈
N(r0), z1 6= z2 holds

Q(fλ(z1)− fλ(z2)) > Q(z1 − z2). (78)

Moreover, for any z ∈ N(r) holds

(πxfλ(z)− πxz0)2 > r, if ‖πx(z − z0)‖ = r (79)
(πyfλ(z)− πyz0)2 < r, if ‖πy(z − z0)‖ = r (80)

Continuation of the proof of Theorem 12: Let us fix any r ≤ r0, where r0 is as
in Lemma 13.

We define an h-set N with cones as follows: we set |N | = N(r), cN (z) =
1
r (z − z0), u(N) = u, s(N) = s and QN (z′) = Q(c−1

N (z′)) for z′ ∈ Nc.
From Lemma 13 it follows that the following conditions are satisfied for any

λ ∈ [0, 1]

QN (fλ,c(z1)− fλ,c(z2)) > QN (z1 − z2), z1, z2 ∈ Nc, z1 6= z2 (81)
πxfλ(N) ⊂ Rn \ πxN = Rn \Bu(πxz0, r) (82)
πyfλ(N) ⊂ Bs(πyz0, r) (83)

We will prove that
N

f
=⇒ N. (84)

For this we need a suitable homotopy. We define H : [0, 1] × N → Ru+s as
follows

H(λ, z) =

{
f2λ(z) for λ ∈ [

0, 1
2

]
,

(A(πx(z − z0), (−2λ + 2)Uπy(z − z0)) + z0 for λ ∈ [
1
2 , 1

]
.

Observe that

H0 = f, H1(z) = (A(πx(z − z0)), 0) + z0 (85)
πxHλ(N) ⊂ Rn \ πxN = Rn \Bu(πxz0, r) (86)
πyHλ(N) ⊂ Bs(πyz0, r). (87)

It is immediate to check that the homotopy h(λ, z) = cN (H(λ, c−1
N )(z)) satisfies

all conditions for the covering relation N
f,w
=⇒ N , where w = ±1 due to linearity

of h1.

Analogous reasoning leads to NT f−1

=⇒ NT (we may need to decrease further
r in the construction.)

The remaining assertions, with the exception of the one the concerning the
tangency to Wu,s(z0, L) at z0, follow directly from Theorems 10 and 11.

To prove the tangency of Wu(z0, f) to z0 + Ru × {0}s at z0 = (x0, y0) it
is enough to prove that for any ε > 0, there exists r > 0, such that for any
z = (x, y(x)) ∈ Wu

N(r)(z0, f) holds

‖y(x)− y0‖ ≤ ε‖x− x0‖. (88)
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For given α, β the set Wu
N(r)(z0, f) for r sufficiently small is a horizontal disk

satisfying the condition with respect to the quadratic form Q(x, y) = αx2−βy2.
Therefore we have

Q((x, y(x))− (x0, y0)) > 0
β‖y(x)− y0‖2 < α ‖x− x0‖2
‖y(x)− y0‖ <

√
α/β ‖x− x0‖,

which proves (88).
The proof of the tangency for W s(z0, f) to z0 +{0}u×Rs at z0 is analogous.

Proof of Lemma 13: To see that (78) is indeed satisfied for zi close to z0, we
derive some other condition, which forces it (compare Lemma 7). For this end
let Q be a symmetric matrix corresponding the quadratic form Q. Then

Q(fλ(z1)− fλ(z2))−Q(z1 − z2) =
(fλ(z1)− fλ(z2))T Q(fλ(z1)− fλ(z2))− (z1 − z2)T Q(z1 − z2) =

(z1 − z2)T CT QC(z1 − z2)− (z1 − z2)T Q(z1 − z2) =
(z1 − z2)T (CT QC −Q)(z1 − z2),

where

C = C(λ, z1, z2) =
∫ 1

0

dfλ(z1 + t(z2 − z1))dt =

(1− λ)
∫ 1

0

dfλ(z1 + t(z2 − z1))dt + λdf(z0)

Observe that for z1, z2 → z0 the matrix C(λ, z1, z2) converges to df(z0)
uniformly with respect to λ ∈ [0, 1]. Therefore it is enough to show that the
symmetric matrix V = df(x0)T Qdf(x0)−Q is positive definite.

We have

V =
[

α(AT A− Id), 0
0, β(Id− UT U)

]

Since α > 0, β > 0 and AT A − Id and Id − UT U are positive definite, hence
V is positive definite. From this is follows that there is r0, such that (78) holds
for z1, z2 ∈ N(r0), z1 6= z2.

Now we prove condition (79). We have

(πxfλ(z)− πz0)2 = (πxfλ(z1)− πxfλ(z0))2 =
(C11(πxz − πxz0) + C12(πyz − πyz0))2, (89)
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where

C11 = C11(λ, z1, z0) =
∫ 1

0

∂πxfλ

∂x
(z0 + t(z − z0))dt =

∂πxfλ

∂x
(z0) + O(‖z − z0‖) = A + O(‖z − z0‖),

C12 = C12(λ, z1, z0) =
∫ 1

0

∂πxfλ

∂y
(z0 + t(z − z0))dt =

∂πxfλ

∂y
(z0) + O(‖z − z0‖) = O(‖z − z0‖).

Let us fix 0 < r ≤ r0 and λ ∈ [0, 1]. Let z = (x, y) ∈ N(r), z0 = (x0, y0) and
‖x− x0‖ = r. We have

(πxfλ(z)− x0)2 = (C11(x− x0))
2 + (C12(y − y0))

2 +
2(x− x0)T CT

11C12(y − y0) ≥ (1 + a−O(r))r2 −
O(r)2r2 − 2(‖A‖+ O(r))O(r)r2 = (1 + a−O(r))r2

where a > 0 is such that xT AT Ax ≥ (1 + a)x2. Hence (79) holds provided r0 is
small enough.

The justification of (80) is analogous.

5.1 Continuous dependence of invariant manifolds of a hy-
perbolic fixed point on parameters

Theorem 14 Let Λ ⊂ Rk and V ⊂ Rn be open sets. Assume that f : Λ× V →
Rn, where Λ ⊂ Rk be such that

• ∀λ ∈ Λ fλ is C1-diffeomorphism

• f and ∂f
∂z are continuous on Λ× Rn

• z0 is a hyperbolic fixed point of fλ0 .

Then there exists sets C ⊂ Λ and U ⊂ V , such (λ0, z0) ∈ int(C × U) and a
continuous function p : C → U , such that p(λ) is a hyperbolic fixed point for fλ,
p(λ0) = z0 and Wu,s

U (p(λ), fλ) depend continuously on λ, for λ ∈ C.
The continuity of sets Wu,s(p(λ), fλ) with respect to λ ∈ C means that they

are given as graphs of some functions depending continuously on λ.

Proof: The existence of p(λ) follows immediately from the implicit function
theorem.

By proceeding as in the proof of Theorem 12, namely by using the diago-
nalizing coordinates for ∂fλ0

∂z (z0) we can construct arbitrarily small h-set with
cones (N, Q), N = N(r), such that

N
fλ0=⇒ N (90)
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and the interval quadratic form given by

V = [dfλ0,c]T Q[dfλ0,c]−Q (91)

is positive definite.
Observe that conditions (90,91) are both stable with respect to small change

of map fλ0 , therefore there exists a set C ⊂ Λ, such that λ0 ∈ intC and

N
fλ=⇒ N (92)

and the interval quadratic form given by

V = [dfλ,c]T Q[dfλ,c]−Q (93)

is positive definite.
Theorems 10 and 11 imply that Wu,s(p(λ), fλ) are horizontal or vertical

disks in N , respectively.
It remains to prove the continuity of Wu,s(p(λ), fλ). Let us focus on the

unstable manifold. Observe first that f−1
λ (z) is continuous on C ×N .

From the previous reasoning it follows that there exists a function y : C ×
Bu(0, r) → Bs(0, r), such that

z ∈ Wu
N (p(λ), fλ)) iff z = z0 + (x, y(λ, x)), for some x ∈ Bu(0, r). (94)

It is enough to prove that the function y(λ, x) is continuous with respect to both
arguments. Let (λk, xk) ∈ C × Bu(0, r) for k ∈ N be a sequence converging to
(λ̄, x̄) ∈ C ×Bu(0, r). Let us define ȳ = y(λ̄, x̄), zk = z0 + (xk, y(λk, xk)).

Obviously we have

f−i
λk

(zk) ∈ N, for i ∈ N (95)

Consider the sequence yk = y(λk, xk) we need to show that limk→∞ yk = ȳ.
Observe that yk ∈ Bs(0, r), hence we can pick up convergent subsequences. The
proof will be completed, when we show that any convergent subsequence of {yk}
converges to ȳ.

Let {ykn} be a subsequence of {y} convergent to u0. We will show that
z̄ = z0 + (x̄, u0) belongs to Wu(p(λ̄), fλ̄).

Since zkn → z̄ for n →∞ then from the continuity argument applied to (95)
it follows that for any i ∈ N

f−i
λ̄

(z̄) ∈ N. (96)

Therefore z̄ ∈ Inv−(N, fλ̄). From Lemma 9 it follows that z̄ ∈ Wu
N (p(λ̄), fλ̄).

Now from (94) it follows that u0 = ȳ.
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6 The stable and unstable manifolds of hyper-
bolic fixed points for ODEs.

Consider an ordinary differential equation

z′ = f(z), z ∈ Rn, f ∈ C2(Rn,Rn). (97)

Let us denote by ϕ(t, p) the solution of (97) with the initial condition z(0) = p.
For any t ∈ R by we define a map ϕ(t, ·) : Rn → Rn by ϕ(t, ·)(x) = ϕ(t, x). We
ignore here the question whether ϕ(t, x) is defined for every (t, x), but this can
be achieved by modification of f outside a large ball containing the phenomena
under consideration.

Let Z ⊂ Rn, z0 ∈ Z. We define

W s
Z(z0, ϕ) = {z | ∀t≥0ϕ(t, z) ∈ Z, lim

t→∞
ϕ(t, z) = z0} (98)

Wu
Z (z0, ϕ) = {z | ∀t≤0ϕ(t, z) ∈ Z, lim

t→−∞
ϕ(t, z) = z0} (99)

W s(z0, ϕ) = {z | lim
t→∞

ϕ(t, z) = z0} (100)

Wu(z0, ϕ) = {z | lim
t→−∞

ϕ(t, x) = z0} (101)

Inv+(Z, ϕ) = {z | ∀t≥0ϕ(t, z) ∈ Z} (102)
Inv−(Z, ϕ) = {z | ∀t≤0ϕ(t, z) ∈ Z} (103)

Sometimes, when ϕ is known from the context it will be dropped and we will
write W s

Z(z0), Inv±(Z) etc.
The goal of this section is to prove the following theorem.

Theorem 15 Assume that z0 = (x0, y0) is an hyperbolic fixed point for (97),
i.e. Reλ 6= 0 for all λ ∈ Sp(df(z0)).

Let Z ⊂ Rn be an open set, such that z0 ∈ Z.
Then there exists an h-set N with cones, such that z0 ∈ N , N ⊂ Z,

Wu
N (z0) is a horizontal disk in N satisfying the cone condition and W s

N (z0) is
a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) can be represented as a graph of a Lipschitz function

over the unstable space for the linearization of f at z0 and tangent to it at z0.
Analogous statement is also valid for W s

N (z0).

Proof: Consider a flow obtained from (97) by linearization

x′ = df(z0)(x− z0). (104)

Let ϕL denotes the flow induced by (104) and let u and s be the dimension
of the unstable and stable manifolds for (104) at z0. It well known that there
exists a coordinate system and the scalar product (·, ·) such that following holds

df(z0) =
[

A 0
0 U

]
(105)
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where A ∈ Ru×u, U ∈ Rs×s, such that A + AT is positive definite and U + UT

is negative definite. In this coordinate system Wu(z0, ϕL) = {z0} + Ru × {0}s

and W s(z0, ϕL) = {z0}+{0}u×Rs. We will use these coordinates in our proof.
Let us fix α, β ∈ R+. Let us define a quadratic form Q((x, y)) = αx2 − βy2,

where x ∈ Ru and y ∈ Rs.
For any λ ∈ [0, 1] let ϕλ be the flow induced by

z′ = fλ(z) := (1− λ)f(z) + λ(df(z0)(z − z0)) (106)

For any r > 0 we define N(r) by

N(r) = {z0}+ Bu(0, r)×Bs(0, r). (107)

To proceed further we need the following Lemma, which will be proved after
we complete the current proof.

Lemma 16 There exists r0 > 0, such that for λ ∈ [0, 1] and for any 0 < r ≤ r0

the following conditions are satisfied.

d

dt
Q(ϕλ(t, z1)− ϕλ(t, z2))|t=0 > 0, for all z1, z2 ∈ N(r), z1 6= z2 (108)

d(πx(ϕλ(t, z))− x0)2

dt
(z) > 0, z ∈ N(r) and ‖πx(z − z0)‖ ≥ r

2 (109)

d(πy(ϕλ(t, z))− y0)2

dt
(z) < 0, z ∈ N(r) and ‖πy(z − z0)‖ ≥ r

2 (110)

Continuation of the proof of Theorem 15. Let us fix r = r0/2, where r0 is as in
Lemma 16. We define the h-set N with cones as follows: we set |N | = N(r),
cN (z) = 1

r (z − z0), u(N) = u, s(N) = s and QN (z′) = Q(c−1
N (z′)) for z′ ∈ Nc.

Observe that from Lemma 16 it follows immediately, that in the sense of the
Conley index theory [S] the pair (N,N−) is an isolating block.

From Lemma 16 if follows that for h > 0 small enough the following condi-
tions are satisfied for every λ ∈ [0, 1]

if z ∈ N , then ϕλ([−h, h], z) ∈ N(r0) (111)
if z ∈ N−, then ϕλ((0, h], z) /∈ N , (112)

if z ∈ N+, then ϕλ([−h, 0), z) /∈ N , (113)
if z, ϕλ(h, z) ∈ N , then ϕλ([0, h], z) ∈ N (114)

if z, ϕλ(−h, z) ∈ N , then ϕλ([−h, 0], z) ∈ N . (115)

From Lemma 16 and condition (111) it follows that

Q(ϕ(h, z1)− ϕ(h, z2)) > Q(z1 − z2), for z1, z2 ∈ N, z1 6= z2 (116)

We will prove that

N
ϕ(h,·)
=⇒ N. (117)
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For the proof of (117) we need a suitable homotopy. First consider H(λ, h) =
ϕλ(h, ·). Obviously, H0 = ϕ(h, ·) and H1 = ϕL(h, ·).

From Lemma 16 if follows that

πx(H([0, 1], N−)) ⊂ Ru \Bu(x0, r), (118)
πy(H([0, 1], N)) ⊂ Bs(y0, r). (119)

Observe that the above conditions imply that

H([0, 1], N−) ∩N = ∅, (120)
H([0, 1], N) ∩N+ = ∅. (121)

We have H1(x, y) = (exp(Ah)(x− x0), exp(Uh)(y − y0)) + z0. Let us define
the homotopy G : [0, 1]× Ru × Rs → Ru × Rs by

G(λ, x, y) = (exp(Ah)(x− x0), (1− λ) exp(Uh)(y − y0)) + z0. (122)

Let F be the homotopy obtained by concatenation of H and G, this means that

F (λ, z) =

{
H(2λ, z) for 0 ≤ λ ≤ 1/2,

G(2(λ− 1/2), z) otherwise.
(123)

It is easy to see the homotopy Fc(λ, z) = cN (F (λ, c−1
N (z))) for z ∈ Nc satisfies

all conditions for the covering relation N
ϕ(h,·),w
=⇒ N , where w = ±1 (this follows

from the linearity of F1.)
Now we apply Theorems 11 and 10 to (N, Q) and ϕ(h, ·) to infer that

Wu
N (z0, ϕ(h, ·)) and W s

N (z0, ϕ(h, ·)) are horizontal and vertical disks, respec-
tively.

To finish the proof we need to show that

Wu
N (z0, ϕ(h, ·)) = Wu

N (z0, ϕ) (124)
W s

N (z0, ϕ(h, ·)) = W s
N (z0, ϕ) (125)

Let us prove (124), the proof of (125) is analogous.
Observe first, that the inclusion Wu

N (z0, ϕ(h, ·)) ⊃ Wu
N (z0, ϕ) is obvious.

For the opposite direction let us take z ∈ Wu
N (z0, ϕ(h, ·)), then from condition

(115) it follows that ϕ((−∞, 0], z) ⊂ N . From Lemma 16 if follows that V (z) =
Q(z − z0) is decreasing (in strong sense) as long as the orbit stays in N . Hence
limt→−∞ ϕ(t, z) = z0.

The tangency of the stable (unstable) manifolds of ϕ and ϕL at z0 is obtained
as in the map case - see the conclusion of the proof of Theorem 12 for more
details.

Proof of Lemma 16
Let us fix λ ∈ [0, 1]. For zi ∈ Rn and t ∈ R let zi(t) = ϕλ(t, zi).
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Let Q be a symmetric matrix corresponding the quadratic form Q. Then
d

dt
Q(z1(t)− z2(t))|t=0 =

(fλ(z1)− fλ(z2))T Q(z1 − z2) + (z1 − z2)T Q(fλ(z1)− fλ(z2)) =
(z1 − z2)T CT Q(z1 − z2) + (z1 − z2)T QC(z1 − z2) =

(z1 − z2)T (CT Q + QC)(z1 − z2),

where

C = C(λ, z1, z2) =
∫ 1

0

dfλ(z1 + t(z2 − z1))dt =

(1− λ)
∫ 1

0

df(z1 + t(z2 − z1))dt + λdf(z0).

Observe that for z1, z2 → z0 the matrix C(λ, z1, z2) converges to df(z0) uni-
formly with respect to λ ∈ [0, 1], hence it is enough to show that the symmetric
matrix df(z0)T Q + Qdf(z0) is positive definite.

We have

df(z0)T Q + Qdf(x0) =
[

AT 0
0 UT

] [
α 0
0 −β

]
+

[
α 0
0 −β

] [
A 0
0 U

]
=

[
α(A + AT ) 0

0 −β(U + UT )

]

Since matrices α(A + AT ) and −β(U + UT ) are positive definite, then the same
is true about df(z0)T Q + Qdf(x0).

Consider condition (109). Let z = (x, y). We have for t = 0

d(πx(ϕλ(t, z))− x0)2

dt
= 2(x− x0)T πxfλ(z) =

2(x− x0)T C11(x− x0) + 2(x− x0)T C12(y − y0),

where

C11 = C11(λ, z, z0) =
∫ 1

0

∂πxfλ

∂x
(z0 + t(z − z0))dt =

∂πxf

∂x
(z0) + O(‖z − z0‖) = A + O(‖z − z0‖),

C12 = C12(λ, z, z0) =
∫ 1

0

∂πxfλ

∂y
(z0 + t(z − z0))dt =

∂πxf

∂y
(z0) + O(‖z − z0‖) = O(‖z − z0‖).

Now let z = (x, y) ∈ N(r) and ‖x− x0‖ ≥ r
2 . We have for t = 0

d(πx(ϕλ(t, z))− x0)2

dt
=

(x− x0)T (A + AT )(x− x0) + 2(x− x0)T O(r)(x− x0) +
2(x− x0)T O(r)(y − y0) ≥ a(r/2)2 −O(r)r2 = (a/4−O(r))r2,
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where a > 0 is such that xT (A + AT )x ≥ ax2. Hence (109) holds provided r0 is
small enough.

The justification of (110) is analogous.

7 Non-hyperbolic example

Consider the following map f : R2 → R2

f(x, y) = (x + x3, y − y3) + P (x, y), (126)

where P (x, y) is a polynomial, such that the degree of all nonzero terms in P is
at least 4.

Observe that z0 = (0, 0) is a non-hyperbolic fixed point, but a look at the
dominant terms (x + x3, y − y3), suggests that nevertheless z0 will have a one
dimensional stable and unstable manifolds tangent at z0 to the coordinate axes.

We will prove the following theorem

Theorem 17 Consider the map f given by (126).
There exists an h-set N with cones, such that z0 ∈ intN , N ⊂ Z and

• N
f

=⇒ N ,

• Wu
N (z0) is a horizontal disk in N satisfying the cone condition

• W s
N (z0) is a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) is at z0 tangent to the line y = 0 and W s

N (z0) is at z0 tangent
to the line x = 0.

Let us fix α > 0, β > 0 and consider a quadratic form Qα,β : R2 → R

Qα,β(x, y) = αx2 − βy2. (127)

The first step in the proof of Theorem 17 is the following lemma showing
the cone condition for small z1, z2.

Lemma 18 There exists δ > 0, such that if |xi| ≤ δ and |yi| ≤ δ for i = 1, 2,
then

Qα,β(f(z1)− f(z2)) > Qα,β(z1 − z2), (128)

where zi = (xi, yi) for i = 1, 2.

Proof: Let us denote f(z) = (f1(z), f2(z)) and let us set

N(a, b) = a2 + ab + b2. (129)

Obviously we have
a2 + b2

2
≤ N(a, b) ≤ 3(a2 + b2)

2
(130)
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Observe that

f1(z1)− f1(z2) =
x1 − x2 + (x3

1 − x3
2) + C1,1(z1, z2)(x1 − x2) + C1,2(z1, z2)(y1 − y2) =

(x1 − x2) (1 + N(x1, x2) + C1,1(z1, z2)) + C1,2(z1, z2)(y1 − y2),

and

f2(z1)− f2(z2) =
y1 − y2 − (y3

1 − y3
2) + C2,1(z1, z2)(x1 − x2) + C2,2(y1 − y2) =

(y1 − y2) (1−N(y1, y2) + C2,2(z1, z2))) + C2,1(z1, z2)(x1 − x2)

where

Cj,1(z1, z2) =
∫ 1

0

∂Pj

∂x
(z2 + t(z1 − z2))dt

Cj,2(z1, z2) =
∫ 1

0

∂Pj

∂y
(z2 + t(z1 − z2))dt.

It is easy to see that
Cj,i(z1, z2) = O(r3), (131)

where r = maxi=1,2 |xi|, |yi|.
Hence there exists constants Dk > 0, for k = 1, 2, . . . , such that for ‖zi‖∞ ≤

r holds

(f1(z1)− f2(z2))2 − (x1 − x2)2 ≥

(x1 − x2)2
((

1 +
r2

2
−D1r

3

)2

− 1

)
−D2r

3|x1 − x2| · |y1 − y2| ≥

(x1 − x2)2D3r
2 −D4r

3
(
(x1 − x2)2 + (y1 − y2)2

) ≥
(x1 − x2)2D3r

2 −D5r
5

Observe that D3 ≈ 1/2.
Analogously for the second coordinate of f we obtain, for some positive

constants Hi and r sufficiently small

(y1 − y2)2 − (f2(z1)− f2(z2))2 ≥

(y1 − y2)2
(

1− (1− r2

2
+ H1r

3)2
)
−H2r

3|x1 − x2| · |y1 − y2| ≥

(y1 − y2)2
(
1− (1−H3r

2)2
)−H2r

3|x1 − x2| · |y1 − y2| ≥
(y1 − y2)2H4r

2 −H2r
3|x1 − x2| · |y1 − y2| ≥
(y1 − y2)2H4r

2 −H5r
5

Observe that H4 ≈ 1/2.

24



Now we are ready to verify the cone condition

Qα,β(f(z1)− f(z2))−Q(z1 − z2) =
α

(
(f1(z1)− f1(z2))2 − (x1 − x2)2

)
+ β

(
(y1 − y2)2 − (f2(z1)− f2(z2))2

) ≥
αD3r

2(x1 − x2)2 − αD5r
5 + βH4r

2(y1 − y2)2 − βH5r
5 ≥

min(αD3, βH4)r4 − (αD5 + βH5)r5 > 0

for r > 0 sufficiently small.

For r > 0 we define an h-set N(r) ⊂ R2 as follows: u = s = 1, |N(r)| =
[−r, r]2, cN (z) = z

r .

Lemma 19 For r sufficiently small N(r)
f

=⇒ N(r).

Proof: Since we have only one unstable direction, then from [GiZ, ktore tw] it
follows that it is enough to prove that

f1(r, y) > r, f1(−r, y) < −r, for |y| ≤ r (132)
|f2(x, y)| < r, for (x, y) ∈ N(r) (133)

Let r be such that, the following inequalities hold for any (x, y) ∈ N(r)

|Pi(x, y)| < r3, i = 1, 2 (134)

1− 3y2 +
∂P2

∂y
(x, y) > 0. (135)

It is easy to see that (134) implies (132).
To prove (133) observe that from (135) it follows that |f2(x, y)| achieves its

maximum value on N(r) at (x0,±r). Condition (133) now follows immediately
from (134).

Proof of Theorem 17 Let us choose α = β = 1. From the above lemmas it
follows that we can take N = N(r) for r sufficiently small. The statements about
the existence and conditions on Wu,s(0, f) follow directly from Theorems 10 and
11.

The tangency of Wu,s(0, f) to coordinate axes is obtained as in the proof of
Theorem 12, because we have a freedom to choose any α and β (we may need
to decrease further an r).
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